1
|
Flint G, Kooiker K, Moussavi-Harami F. Echocardiography to Assess Cardiac Structure and Function in Genetic Cardiomyopathies. Methods Mol Biol 2024; 2735:1-15. [PMID: 38038840 DOI: 10.1007/978-1-0716-3527-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Rodents are the most common experimental models used in cardiovascular research including studies of genetic cardiomyopathies. Genetic cardiomyopathies are characterized by changes in cardiac structure and function. Echocardiography allows for relatively inexpensive, non-invasive, reliable, and reproducible assessment of these changes. However, the fast heart and small size present unique challenges for investigators. To ensure accuracy and reproducibility of these measurements, investigators need to be familiar with standard practices in the field, normal values, and potential pitfalls. The goal of this chapter is to describe steps needed for reliable acquisition and analysis of echocardiography in rodent models. Additionally, we discuss some common pitfalls and challenges.
Collapse
Affiliation(s)
- Galina Flint
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Center for Translational Muscle Research, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Kristina Kooiker
- Center for Translational Muscle Research, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Farid Moussavi-Harami
- Center for Translational Muscle Research, University of Washington, Seattle, WA, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
- Division of Cardiology, University of Washington, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Farag A, Mandour AS, Hamabe L, Yoshida T, Shimada K, Tanaka R. Novel protocol to establish the myocardial infarction model in rats using a combination of medetomidine-midazolam-butorphanol (MMB) and atipamezole. Front Vet Sci 2022; 9:1064836. [PMID: 36544554 PMCID: PMC9760920 DOI: 10.3389/fvets.2022.1064836] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background Myocardial infarction (MI) is one of the most common cardiac problems causing deaths in humans. Previously validated anesthetic agents used in MI model establishment are currently controversial with severe restrictions because of ethical concerns. The combination between medetomidine, midazolam, and butorphanol (MMB) is commonly used in different animal models. The possibility of MMB combination to establish the MI model in rats did not study yet which is difficult because of severe respiratory depression and delayed recovery post-surgery, resulting in significant deaths. Atipamezole is used to counter the cardiopulmonary suppressive effect of MMB. Objectives The aim of the present study is to establish MI model in rats using a novel anesthetic combination between MMB and Atipamezole. Materials and methods Twenty-five Sprague Dawley (SD) rats were included. Rats were prepared for induction of the Myocardial infarction (MI) model through thoracotomy. Anesthesia was initially induced with a mixture of MMB (0.3/5.0/5.0 mg/kg/SC), respectively. After endotracheal intubation, rats were maintained with isoflurane 1% which gradually reduced after chest closing. MI was induced through the left anterior descending (LAD) artery ligation technique. Atipamezole was administered after finishing all surgical procedures at a dose rate of 1.0 mg/kg/SC. Cardiac function parameters were evaluated using ECG (before and after atipamezole administration) and transthoracic echocardiography (before and 1 month after MI induction) to confirm the successful model. The induction time, operation time, and recovery time were calculated. The success rate of the MI model was also calculated. Results MI was successfully established with the mentioned anesthetic protocol through the LAD ligation technique and confirmed through changes in ECG and echocardiographic parameters after MI. ECG data was improved after atipamezole administration through a significant increase in heart rate (HR), PR Interval, QRS Interval, and QT correction (QTc) and a significant reduction in RR Interval. Atipamezole enables rats to recover voluntary respiratory movement (VRM), wakefulness, movement, and posture within a very short time after administration. Echocardiographic ally, MI rats showed a significant decrease in the left ventricular wall thickness, EF, FS, and increased left ventricular diastolic and systolic internal diameter. In addition, induction time (3.440 ± 1.044), operation time (29.40 ± 3.663), partial recovery time (10.84 ± 3.313), and complete recovery time (12.36 ± 4.847) were relatively short. Moreover, the success rate of the anesthetic protocol was 100%, and all rats were maintained for 1 month after surgery with a survival rate of 88%. Conclusion Our protocol produced a more easy anesthetic effect and time-saving procedures with a highly successful rate in MI rats. Subcutaneous injection of Atipamezole efficiently counters the cardiopulmonary side effect of MMB which is necessary for rapid recovery and subsequently enhancing the survival rate during the creation of the MI model in rats.
Collapse
Affiliation(s)
- Ahmed Farag
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan,Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt,*Correspondence: Ahmed Farag
| | - Ahmed S. Mandour
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan,Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt,Ahmed S. Mandour
| | - Lina Hamabe
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Tomohiko Yoshida
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Kazumi Shimada
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan,Ryou Tanaka
| |
Collapse
|
3
|
Bao LZ, Shen M, Qudirat H, Shi JB, Su T, Song JW, Wang ZK, Zhao XX, Jing Q, Zheng X, Guo ZF. Obestatin ameliorates water retention in chronic heart failure by downregulating renal aquaporin 2 through GPR39, V2R and PPARG signaling. Life Sci 2019; 231:116493. [PMID: 31153818 DOI: 10.1016/j.lfs.2019.05.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 12/28/2022]
Abstract
AIMS Obestatin regulates water metabolism by inhibiting arginine vasopressin (AVP) release and upregulated obestatin has been detected in patients with chronic heart failure (CHF). However, the significance of obestatin in CHF, particularly with regard to water retention and aquaporin 2 (AQP2) expression, remains unknown. MAIN METHODS Using a CHF rat model, the effects of 2-week exogenous obestatin administration were evaluated. Expression of AQP2 was evaluated by immunoblotting, immunohistochemical staining, and quantitative real-time PCR (qPCR) in CHF rat model and mouse inner medullary collecting duct (mIMCD) 3 cell line. Moreover, the influence of obestatin on the genetic transcription profile in mIMCD3 cells was evaluated by microarray, and the potential regulatory mechanisms of obestatin on AQP2 were evaluated by RNA silencing of vasopressin receptor 2 (V2R), peroxisome proliferator-activated receptor gamma (PPARG), and G protein-coupled receptor 39 (GPR39). KEY FINDINGS Obestatin increased urinary output and improved expression of CHF biomarker without significantly altering cardiac function, plasma electrolyte concentrations, or the plasma AVP concentration. AQP2 expression was significantly reduced. The results of microarray analyses and qPCR indicated that mRNA levels of Aqp2, Pparg, and V2r were significantly decreased. Inhibition of V2r and Pparg mRNA further reduced the expression of AQP2, while the inhibitory efficacy of obestatin on AQP2 was significantly offset after Gpr39 knockdown. SIGNIFICANCE Long-term treatment with obestatin improves water retention in CHF by increasing urinary output through downregulation of AQP2 expression in renal IMCD cells. These effects may be at least partially mediated by regulation of GPR39, V2R and PPARG signaling.
Collapse
Affiliation(s)
- Li-Zhi Bao
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Ming Shen
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Hannisa Qudirat
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Jian-Bo Shi
- Department of Cardiology, HongKou Branch of Changhai Hospital of PLA, Shanghai 200081, China
| | - Ting Su
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Jing-Wen Song
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Zhong-Kai Wang
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xian-Xian Zhao
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Qing Jing
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Xing Zheng
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Zhi-Fu Guo
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
4
|
Bertocchi M, Pelizzone I, Parmigiani E, Ponzio P, Macchi E, Righi F, Di Girolamo N, Bigliardi E, Denti L, Bresciani C, Di Ianni F. Monitoring the reproductive activity in captive bred female ball pythons (P. regius) by ultrasound evaluation and noninvasive analysis of faecal reproductive hormone (progesterone and 17β-estradiol) metabolites trends. PLoS One 2018; 13:e0199377. [PMID: 29949610 PMCID: PMC6021098 DOI: 10.1371/journal.pone.0199377] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 06/06/2018] [Indexed: 11/28/2022] Open
Abstract
The royal python (Python regius) is commonly bred in captivity. To have a successful breeding season, accurate monitoring of the reproductive activity is necessary. The use of non-invasive monitoring methods in exotics is important in order to minimize stress. For this purpose ultrasound has been anecdotally used to monitor royal python reproductive activity. However, there is limited information regarding the reproductive cycle of this species. The aim of the present study is to monitor the female reproductive cycle of the royal python using ultrasonography and gonadal steroid metabolite measurements in the faeces. The reproductive activity of one hundred twenty-nine adult female P. regius was examined during two consecutive years. We performed brief scans on non-anaesthetized snakes using a portable ultrasound system and a 10–12 MHz linear array transducer (MyLab™ 30 Gold, Esaote). Ultrasound features, dimension and echogenicity of the reproductive structures were determined. During the second reproductive cycle, the hormonal profiles of 30 animals were also evaluated, with a monthly collection of faecal samples. These samples were classified according to reproductive stage, as identified by ultrasonographic examination, and the mean faecal progesterone and 17β-estradiol levels were calculated using the results from an enzyme-linked immunosorbent assay (ELISA). Progesterone levels increased during the reproductive cycle. Estradiol levels showed greater variability, although they appeared to increase before coupling when compared to the levels between coupling and egg laying. The present study suggests that it is possible to identify different phases in the female royal python reproductive cycle: anovulatory phase, transition, folliculogenesis and embryogenesis. Ultrasound is also useful for identifying follicular regression or slugs. Gonadal steroid metabolite measurements from the faeces could help integrate reproductive information. The use of ultrasonography in addition to the steroid metabolite measurement in the faeces gives an accurate picture of ovarian activity in captive adult female royal pythons.
Collapse
Affiliation(s)
- Mara Bertocchi
- Department of Veterinary Science, Università degli Studi di Parma, Via Del Taglio, Parma, Italy
| | | | - Enrico Parmigiani
- Department of Veterinary Science, Università degli Studi di Parma, Via Del Taglio, Parma, Italy
| | - Patrizia Ponzio
- Department of Veterinary Science, Università degli Studi di Torino, Via Leonardo da Vinci, Grugliasco (TO), Italy
| | - Elisabetta Macchi
- Department of Veterinary Science, Università degli Studi di Torino, Via Leonardo da Vinci, Grugliasco (TO), Italy
| | - Federico Righi
- Department of Veterinary Science, Università degli Studi di Parma, Via Del Taglio, Parma, Italy
| | - Nicola Di Girolamo
- Tai Wai Small Animal and Exotic Hospital, Lap Wo Building, Tai Wai, Sha Tin, Hong Kong
| | - Enrico Bigliardi
- Department of Veterinary Science, Università degli Studi di Parma, Via Del Taglio, Parma, Italy
- * E-mail:
| | - Laura Denti
- Department of Veterinary Science, Università degli Studi di Parma, Via Del Taglio, Parma, Italy
| | - Carla Bresciani
- Department of Veterinary Science, Università degli Studi di Parma, Via Del Taglio, Parma, Italy
| | - Francesco Di Ianni
- Department of Veterinary Science, Università degli Studi di Parma, Via Del Taglio, Parma, Italy
| |
Collapse
|
5
|
Sondermeijer HP, Witkowski P, Seki T, van der Laarse A, Itescu S, Hardy MA. RGDfK-Peptide Modified Alginate Scaffold for Cell Transplantation and Cardiac Neovascularization. Tissue Eng Part A 2017; 24:740-751. [PMID: 28938862 DOI: 10.1089/ten.tea.2017.0221] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell implantation for tissue repair is a promising new therapeutic strategy. Although direct injection of cells into tissue is appealing, cell viability and retention are not very good. Cell engraftment and survival following implantation are dependent on a sufficient supply of oxygen and nutrients through functional microcirculation as well as a suitable local microenvironment for implanted cells. In this study, we describe the development of a porous, biocompatible, three-dimensional (3D) alginate scaffold covalently modified with the synthetic cyclic RGDfK (Arg-Gly-Asp-D-Phe-Lys) peptide. Cyclic RGDfK peptide is protease resistant, highly stable in aqueous solutions, and has high affinity for cellular integrins. Cyclic RGDfK-modified alginate scaffolds were generated using a novel silicone sheet sandwich technique in combination with freeze-gelation, resulting in highly porous nonimmunogenic scaffolds that promoted both human and rodent cell survival in vitro, and neoangiogenesis in vivo. Two months following implantation in abdominal rectus muscles in rats, cyclic RGDfK-modified scaffolds were fully populated by host cells, especially microvasculature without an overt immune response or fibrosis, whereas unmodified control scaffolds did not show cell ingrowth. Importantly, modified scaffolds that were seeded with human mesenchymal precursor cells and were patched to the epicardial surface of infarcted myocardium induced myocardial neoangiogenesis and significantly improved cardiac function. In summary, purified cyclic RGDfK peptide-modified 3D alginate scaffolds are biocompatible and nonimmunogenic, enhance cell viability, promote angiogenesis, and may be used as a means to deliver cells to myocardial infarct areas to improve neovascularization and cardiac function.
Collapse
Affiliation(s)
- Hugo P Sondermeijer
- 1 Department of Surgery, Columbia University Medical Center , New York, New York.,2 Department of Medicine, Columbia University Medical Center , New York, New York.,3 Department of Physiology, Maastricht University Medical Center , Maastricht, The Netherlands
| | - Piotr Witkowski
- 4 Section of Transplantation, Department of Surgery, University of Chicago , Chicago, Illinois
| | - Tetsunori Seki
- 1 Department of Surgery, Columbia University Medical Center , New York, New York.,2 Department of Medicine, Columbia University Medical Center , New York, New York
| | - Arnoud van der Laarse
- 5 Department of Cardiology and Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center , Leiden, The Netherlands
| | - Silviu Itescu
- 1 Department of Surgery, Columbia University Medical Center , New York, New York.,2 Department of Medicine, Columbia University Medical Center , New York, New York.,6 Mesoblast Limited, Melbourne, Australia
| | - Mark A Hardy
- 1 Department of Surgery, Columbia University Medical Center , New York, New York
| |
Collapse
|
6
|
AVP-induced increase in AQP2 and p-AQP2 is blunted in heart failure during cardiac remodeling and is associated with decreased AT1R abundance in rat kidney. PLoS One 2015; 10:e0116501. [PMID: 25658446 PMCID: PMC4319737 DOI: 10.1371/journal.pone.0116501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 12/10/2014] [Indexed: 01/02/2023] Open
Abstract
AIM The objective was to examine the renal effects of long-term increased angiotensin II and vasopressin plasma levels in early-stage heart failure (HF). We investigated the regulations of the V2 vasopressin receptor, the type 1A angiotensin II receptor, the (pro)renin receptor, and the water channels AQP2, AQP1, AQP3, and AQP4 in the inner medulla of rat kidney. METHODS HF was induced by coronary artery ligation. Sixty-eight rats were allocated to six groups: Sham (N = 11), HF (N = 11), sodium restricted sham (N = 11), sodium restricted HF (N = 11), sodium restricted sham + DDAVP (N = 12), and sodium restricted HF + DDAVP (N = 12). 1-desamino-8-D-arginine vasopressin (0.5 ng h-1 for 7 days) or vehicle was administered. Pre- and post-treatment echocardiographic evaluation was performed. The rats were sacrificed at day 17 after surgery, before cardiac remodeling in rat is known to be completed. RESULTS HF rats on standard sodium diet and sodium restriction displayed biochemical markers of HF. These rats developed hyponatremia, hypo-osmolality, and decreased fractional excretion of sodium. Increase of AQP2 and p(Ser256)-AQP2 abundance in all HF groups was blunted compared with control groups even when infused with DDAVP and despite increased vasopressin V2 receptor and Gsα abundance. This was associated with decreased protein abundance of the AT1A receptor in HF groups vs. controls. CONCLUSION Early-stage HF is associated with blunted increase in AQP2 and p(Ser256)-AQP2 despite of hyponatremia, hypo-osmolality, and increased inner medullary vasopressin V2 receptor expression. Decreased type 1A angiotensin II receptor abundance likely plays a role in the transduction of these effects.
Collapse
|
7
|
Use of echocardiography reveals reestablishment of ventricular pumping efficiency and partial ventricular wall motion recovery upon ventricular cryoinjury in the zebrafish. PLoS One 2014; 9:e115604. [PMID: 25532015 PMCID: PMC4274112 DOI: 10.1371/journal.pone.0115604] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/28/2014] [Indexed: 11/27/2022] Open
Abstract
Aims While zebrafish embryos are amenable to in vivo imaging, allowing the study of morphogenetic processes during development, intravital imaging of adults is hampered by their small size and loss of transparency. The use of adult zebrafish as a vertebrate model of cardiac disease and regeneration is increasing at high speed. It is therefore of great importance to establish appropriate and robust methods to measure cardiac function parameters. Methods and Results Here we describe the use of 2D-echocardiography to study the fractional volume shortening and segmental wall motion of the ventricle. Our data show that 2D-echocardiography can be used to evaluate cardiac injury and also to study recovery of cardiac function. Interestingly, our results show that while global systolic function recovered following cardiac cryoinjury, ventricular wall motion was only partially restored. Conclusion Cryoinjury leads to long-lasting impairment of cardiac contraction, partially mimicking the consequences of myocardial infarction in humans. Functional assessment of heart regeneration by echocardiography allows a deeper understanding of the mechanisms of cardiac regeneration and has the advantage of being easily transferable to other cardiovascular zebrafish disease models.
Collapse
|
8
|
Darbandi Azar A, Tavakoli F, Moladoust H, Zare A, Sadeghpour A. Echocardiographic evaluation of cardiac function in ischemic rats: value of m-mode echocardiography. Res Cardiovasc Med 2014; 3:e22941. [PMID: 25785251 PMCID: PMC4347793 DOI: 10.5812/cardiovascmed.22941] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/08/2014] [Indexed: 11/16/2022] Open
Abstract
Background: Echocardiography is a well-established diagnostic tool for a safe, reproducible and accurate evaluation of cardiac anatomy, hemodynamics and function in clinical practice. Objectives: We sought to demonstrate the efficacy and feasibility of M-mode echocardiography to evaluate cardiac structure and function in normal and MI-induced adult rats. Materials and Methods: All animal procedures were approved by the ethics committee of Tehran University of Medical Sciences and the investigation conformed to the “Guide for the Care and Use of Laboratory Animals” published by the United States National Institutes of Health. Forty-eight male Wistar rats weighing 280-300 grams were obtained from a single breeding colony. The statistical analyses were performed using SPSS 20.0. Results: Echocardiographic measurements were possible in all rats before and after the operation. In our survey, we studied echocardiographic alterations in rats after MI induction. Changes can be seen in all echocardiographic mean values after myocardial infarction (MI), but significant decrease (P < 0.01) of Fractional shortening and Ejection Fraction as well as significant increase (P < 0.05) of end systolic diameter and systolic volume after left anterior descending coronary artery (LAD) ligation can be good signs of MI induction. Conclusions: In light of our results, it can be concluded that we succeeded in establishing a precise echocardiographic method to confidently assess the success of LAD ligation surgery in rats. It is feasible to thoroughly monitor the functional efficiency of regional therapeutic interventions such as intra-myocardial stem cell injection.
Collapse
Affiliation(s)
- Amir Darbandi Azar
- Rajaie Cardiovascular, Medical and Research Centre, Iran University of Medical Sciences, Tehran, IR Iran
| | - Fatemeh Tavakoli
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Hassan Moladoust
- Department of Medical Physics and Biomedical Engineering, Guilan University of Medical Sciences, Rasht, IR Iran
| | - Asghar Zare
- Rajaie Cardiovascular, Medical and Research Centre, Iran University of Medical Sciences, Tehran, IR Iran
| | - Anita Sadeghpour
- Echocardiography Research Center, Department of Cardiovascular Medicine, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Anita Sadeghpour, Echocardiography Research Center, Department of Cardiovascular Medicine, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, IR Iran. Tel: +98-2123922145, E-mail:
| |
Collapse
|
9
|
Rasmussen JG, Frøbert O, Holst-Hansen C, Kastrup J, Baandrup U, Zachar V, Fink T, Simonsen U. Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model. Cell Transplant 2012; 23:195-206. [PMID: 23211469 DOI: 10.3727/096368912x659871] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Treatment of myocardial infarction (MI) with bone marrow-derived mesenchymal stem cells and recently also adipose-derived stem cells has shown promising results. In contrast to clinical trials and their use of autologous bone marrow-derived cells from the ischemic patient, the animal MI models are often using young donors and young, often immune-compromised, recipient animals. Our objective was to compare bone marrow-derived mesenchymal stem cells with adipose-derived stem cells from an elderly ischemic patient in the treatment of MI using a fully grown non-immune-compromised rat model. Mesenchymal stem cells were isolated from adipose tissue and bone marrow and compared with respect to surface markers and proliferative capability. To compare the regenerative potential of the two stem cell populations, male Sprague-Dawley rats were randomized to receive intramyocardial injections of adipose-derived stem cells, bone marrow-derived mesenchymal stem cells, or phosphate-buffered saline 1 week following induction of MI. After 4 weeks, left ventricular ejection fraction (LVEF) was improved in the adipose-derived stem cell group, and scar wall thickness was greater compared with the saline group. Adipose-derived as well as bone marrow-derived mesenchymal stem cells prevented left ventricular end diastolic dilation. Neither of the cell groups displayed increased angiogenesis in the myocardium compared with the saline group. Adipose-derived stem cells from a human ischemic patient preserved cardiac function following MI, whereas this could not be demonstrated for bone marrow-derived mesenchymal stem cells, with only adipose-derived stem cells leading to an improvement in LVEF. Neither of the stem cell types induced myocardial angiogenesis, raising the question whether donor age and health have an effect on the efficacy of stem cells used in the treatment of MI.
Collapse
Affiliation(s)
- Jeppe Grøndahl Rasmussen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Rats and mice are the predominant experimental species in cardiovascular research due to the widespread availability of genetic and transgenic rodent models of heart disease. Phenotyping of these models requires reliable and reproducible methods to noninvasively and serially assess cardiovascular structure and function. However, the small size of rodents has presented a challenge. Many of these challenges have been overcome in recent years due to significant technological advances in echocardiographic capabilities. For example, improved spatial resolution and increased frame rates have allowed more precise and accurate quantification of diminutive structures, myocardial function, and blood flow in mice. Consequently, transthoracic echocardiography (TTE) has emerged as a popular and powerful tool for cardiac phenotypic characterization in rodents. This chapter will focus on the use of TTE in rodents for evaluating (1) left ventricular (LV) chamber dimensions and wall thickness, (2) LV mass, (3) global LV systolic and diastolic function, (4) regional LV systolic function by newly developed tissue Doppler imaging (TDI), and (5) hemodynamic parameters. Reliability of these measurements depends on various factors such as the skill and experience of the sonographer and the image analyzer, the type, depth, and duration of anesthesia, and animal characteristics. These topics will also be discussed.
Collapse
Affiliation(s)
- Jing Liu
- Novartis Institutes for BioMedical Research and Novartis Pharmaceutical Corporation, East Hanover, NJ, USA
| | | |
Collapse
|
11
|
Campos EC, Romano MMD, Prado CM, Rossi MA. Isoproterenol induces primary loss of dystrophin in rat hearts: correlation with myocardial injury. Int J Exp Pathol 2008; 89:367-81. [PMID: 18808529 DOI: 10.1111/j.1365-2613.2008.00604.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The mechanism of isoproterenol-induced myocardial damage is unknown, but a mismatch of oxygen supply vs. demand following coronary hypotension and myocardial hyperactivity is the best explanation for the complex morphological alterations observed. Severe alterations in the structural integrity of the sarcolemma of cardiomyocytes have been demonstrated to be caused by isoproterenol. Taking into account that the sarcolemmal integrity is stabilized by the dystrophin-glycoprotein complex (DGC) that connects actin and laminin in contractile machinery and extracellular matrix and by integrins, this study tests the hypothesis that isoproterenol affects sarcolemmal stability through changes in the DGC and integrins. We found different sensitivity of the DGC and integrin to isoproterenol subcutaneous administration. Immunofluorescent staining revealed that dystrophin is the most sensitive among the structures connecting the actin in the cardiomyocyte cytoskeleton and the extracellular matrix. The sarcomeric actin dissolution occurred after the reduction or loss of dystrophin. Subsequently, after lysis of myofilaments, gamma-sarcoglycan, beta-dystroglycan, beta1-integrin, and laminin alpha-2 expressions were reduced followed by their breakdown, as epiphenomena of the myocytolytic process. In conclusion, administration of isoproterenol to rats results in primary loss of dystrophin, the most sensitive among the structural proteins that form the DGC that connects the extracellular matrix and the cytoskeleton in cardiomyocyte. These changes, related to ischaemic injury, explain the severe alterations in the structural integrity of the sarcolemma of cardiomyocytes and hence severe and irreversible injury induced by isoproterenol.
Collapse
Affiliation(s)
- Erica C Campos
- Department of Pathology (Cellular and Molecular Cardiology), Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
12
|
Forkhead class O transcription factor 3a activation and Sirtuin1 overexpression in the hypertrophied myocardium of the diabetic Goto-Kakizaki rat. J Hypertens 2008; 26:334-44. [PMID: 18192848 DOI: 10.1097/hjh.0b013e3282f293c8] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Ventricular remodeling in type 2 diabetes predisposes to fatal coronary heart disease. The proapoptotic forkhead class O transcription factor 3a (FOXO3a) and its modulator, the cardioprotective longevity factor and class III histone deacetylase Sirtuin1 (Sirt1), have been implicated in the regulation of the cardiomyocyte lifespan and hypertrophy. OBJECTIVE To examine whether FOXO3a-Sirt1 activation is involved in diabetes-induced cardiomyocyte apoptosis and ventricular hypertrophy. METHODS The blood pressure, cardiac functions, cardiomyocyte size, neurohumoral markers, cardiomyocyte apoptosis, nuclear binding of FOXO3a, and Sirt1 expression were determined for 12-week-old spontaneously diabetic Goto-Kakizaki rats and the nondiabetic Wistar control rats. RESULTS Goto-Kakizaki rats showed a modest increase in blood pressure, pronounced cardiac hypertrophy, impaired systolic function, and increased plasma brain natriuretic peptide level without changes in plasma renin activity, serum aldosterone or urinary noradrenaline excretion. The cardiomyocyte cross-sectional area was increased by 22%. Phosphorylation of FOXO3a was decreased with a concomitant increase in its nuclear translocation. The myocardial expression of the antiapoptotic FOXO3a modulator Sirt1 was increased two-fold. Acetylation of p53 at the Sirt1-specific lysine 373/382 site was markedly decreased. Myocardial caspase-3 and Bax expression were increased, indicating increased apoptotic signaling; however, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling staining did not reveal any significant increase in cardiomyocyte apoptosis. CONCLUSIONS Diabetes-induced cardiac remodeling in Goto-Kakizaki rats is associated with cardiac hypertrophy, systolic dysfunction, increased apoptotic signaling and activation of the FOXO3a pathway. The present study also suggests that antiapoptotic Sirt1 protects against cardiomyocyte apoptosis and acts as a novel regulator of cardiomyocyte growth.
Collapse
|
13
|
Current World Literature. Curr Opin Anaesthesiol 2008; 21:85-8. [DOI: 10.1097/aco.0b013e3282f5415f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|