1
|
Chen W, Song J, Gong S. Advances in nutritional metabolic therapy to impede the progression of critical illness. Front Nutr 2024; 11:1416910. [PMID: 39036495 PMCID: PMC11259093 DOI: 10.3389/fnut.2024.1416910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024] Open
Abstract
With the advancement of medical care and the continuous improvement of organ support technologies, some critically ill patients survive the acute phase of their illness but still experience persistent organ dysfunction, necessitating long-term reliance on intensive care and organ support, known as chronic critical illness. Chronic critical illness is characterized by prolonged hospital stays, high mortality rates, and significant resource consumption. Patients with chronic critical illness often suffer from malnutrition, compromised immune function, and poor baseline health, which, combined with factors like shock or trauma, can lead to intestinal mucosal damage. Therefore, effective nutritional intervention for patients with chronic critical illness remains a key research focus. Nutritional therapy has emerged as one of the essential components of the overall treatment strategy for chronic critical illness. This paper aims to provide a comprehensive review of the latest research progress in nutritional support therapy for patients with chronic critical illness.
Collapse
Affiliation(s)
- Wenwei Chen
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jia Song
- Zhejiang Hospital, Hangzhou, China
| | | |
Collapse
|
2
|
Elke G, Hartl WH, Adolph M, Angstwurm M, Brunkhorst FM, Edel A, Heer GD, Felbinger TW, Goeters C, Hill A, Kreymann KG, Mayer K, Ockenga J, Petros S, Rümelin A, Schaller SJ, Schneider A, Stoppe C, Weimann A. [Laboratory and calorimetric monitoring of medical nutrition therapy in intensive and intermediate care units : Second position paper of the Section Metabolism and Nutrition of the German Interdisciplinary Association for Intensive Care and Emergency Medicine (DIVI)]. Med Klin Intensivmed Notfmed 2023; 118:1-13. [PMID: 37067563 PMCID: PMC10106891 DOI: 10.1007/s00063-023-01001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2023] [Indexed: 04/18/2023]
Abstract
This second position paper of the Section Metabolism and Nutrition of the German Interdisciplinary Association for Intensive Care and Emergency Medicine (DIVI) provides recommendations on the laboratory monitoring of macro- and micronutrient intake as well as the use of indirect calorimetry in the context of medical nutrition therapy of critically ill adult patients. In addition, recommendations are given for disease-related or individual (level determination) substitution and (high-dose) pharmacotherapy of vitamins and trace elements.
Collapse
Affiliation(s)
- Gunnar Elke
- Klinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3 Haus R3, 24105, Kiel, Deutschland.
| | - Wolfgang H Hartl
- Klinik für Allgemein‑, Viszeral- und Transplantationschirurgie, Ludwig-Maximilians-Universität München - Klinikum der Universität, Campus Großhadern, München, Deutschland
| | - Michael Adolph
- Universitätsklinik für Anästhesiologie und Intensivmedizin und Stabsstelle Ernährungsmanagement, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - Matthias Angstwurm
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München - Klinikum der Universität, Campus Innenstadt, München, Deutschland
| | - Frank M Brunkhorst
- Zentrum für Klinische Studien, Klinik für Anästhesiologie und Intensivtherapie, Universitätsklinikum Jena, Jena, Deutschland
| | - Andreas Edel
- Klinik für Anästhesiologie mit Schwerpunkt operative Intensivmedizin (CVK, CCM), Charité - Universitätsmedizin Berlin, Berlin, Deutschland
| | - Geraldine de Heer
- Zentrum für Anästhesiologie und Intensivmedizin, Klinik für Intensivmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - Thomas W Felbinger
- Klinik für Anästhesiologie, Operative Intensivmedizin und Schmerztherapie, Kliniken Harlaching und Neuperlach, Städtisches Klinikum München GmbH, München, Deutschland
| | - Christiane Goeters
- Klinik für Anästhesiologie, operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, Münster, Deutschland
| | - Aileen Hill
- Kliniken für Anästhesiologie und Operative Intensivmedizin und Intermediate Care, Uniklinik RWTH Aachen, Aachen, Deutschland
| | | | - Konstantin Mayer
- Klinik für Pneumologie und Schlafmedizin, St. Vincentius-Kliniken, Karlsruhe, Deutschland
| | - Johann Ockenga
- Medizinische Klinik II, Klinikum Bremen Mitte, Bremen, Deutschland
| | - Sirak Petros
- Interdisziplinäre Internistische Intensivmedizin, Universitätsklinikum Leipzig, Leipzig, Deutschland
| | - Andreas Rümelin
- Anästhesie, Intensivmedizin und Notfallmedizin, Helios St. Elisabeth-Krankenhaus Bad Kissingen, Kissingen, Deutschland
| | - Stefan J Schaller
- Klinik für Anästhesiologie mit Schwerpunkt operative Intensivmedizin (CVK, CCM), Charité - Universitätsmedizin Berlin, Berlin, Deutschland
- Medizinische Fakultät, Klinik für Anästhesiologie und Intensivmedizin, Technische Universität München, München, Deutschland
| | - Andrea Schneider
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover, Hannover, Deutschland
| | - Christian Stoppe
- Klinik und Poliklinik für Anästhesiologie, Intensivmedizin, Notfallmedizin und Schmerztherapie, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - Arved Weimann
- Abteilung für Allgemein‑, Viszeral- und Onkologische Chirurgie, Klinikum St. Georg gGmbH, Leipzig, Deutschland
| |
Collapse
|
3
|
Wischmeyer PE, Bear DE, Berger MM, De Waele E, Gunst J, McClave SA, Prado CM, Puthucheary Z, Ridley EJ, Van den Berghe G, van Zanten ARH. Personalized nutrition therapy in critical care: 10 expert recommendations. Crit Care 2023; 27:261. [PMID: 37403125 DOI: 10.1186/s13054-023-04539-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023] Open
Abstract
Personalization of ICU nutrition is essential to future of critical care. Recommendations from American/European guidelines and practice suggestions incorporating recent literature are presented. Low-dose enteral nutrition (EN) or parenteral nutrition (PN) can be started within 48 h of admission. While EN is preferred route of delivery, new data highlight PN can be given safely without increased risk; thus, when early EN is not feasible, provision of isocaloric PN is effective and results in similar outcomes. Indirect calorimetry (IC) measurement of energy expenditure (EE) is recommended by both European/American guidelines after stabilization post-ICU admission. Below-measured EE (~ 70%) targets should be used during early phase and increased to match EE later in stay. Low-dose protein delivery can be used early (~ D1-2) (< 0.8 g/kg/d) and progressed to ≥ 1.2 g/kg/d as patients stabilize, with consideration of avoiding higher protein in unstable patients and in acute kidney injury not on CRRT. Intermittent-feeding schedules hold promise for further research. Clinicians must be aware of delivered energy/protein and what percentage of targets delivered nutrition represents. Computerized nutrition monitoring systems/platforms have become widely available. In patients at risk of micronutrient/vitamin losses (i.e., CRRT), evaluation of micronutrient levels should be considered post-ICU days 5-7 with repletion of deficiencies where indicated. In future, we hope use of muscle monitors such as ultrasound, CT scan, and/or BIA will be utilized to assess nutrition risk and monitor response to nutrition. Use of specialized anabolic nutrients such as HMB, creatine, and leucine to improve strength/muscle mass is promising in other populations and deserves future study. In post-ICU setting, continued use of IC measurement and other muscle measures should be considered to guide nutrition. Research on using rehabilitation interventions such as cardiopulmonary exercise testing (CPET) to guide post-ICU exercise/rehabilitation prescription and using anabolic agents such as testosterone/oxandrolone to promote post-ICU recovery is needed.
Collapse
Affiliation(s)
- Paul E Wischmeyer
- Department of Anesthesiology and Surgery, Duke University School of Medicine, Box 3094 Mail # 41, 2301 Erwin Road, 5692 HAFS, Durham, NC, USA.
| | - Danielle E Bear
- Departments of Nutrition and Dietetics and Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Mette M Berger
- Faculty of Biology & Medicine, Lausanne University, Lausanne, Switzerland
| | - Elisabeth De Waele
- Department of Clinical Nutrition, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Vrije Universiteit Brussel, Brussels, Belgium
| | - Jan Gunst
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Louvain, Belgium
| | - Stephen A McClave
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Carla M Prado
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Zudin Puthucheary
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Emma J Ridley
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Level 3, 553 St Kilda Rd, Melbourne, VIC, 3004, Australia
- Dietetics and Nutrition, Alfred Hospital, 55 Commercial Rd, Melbourne, VIC, 3004, Australia
| | - Greet Van den Berghe
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Louvain, Belgium
| | - Arthur R H van Zanten
- Department of Intensive Care, Gelderse Vallei Hospital, Wageningen University & Research, Ede, The Netherlands
| |
Collapse
|
4
|
Dresen E, Naidoo O, Hill A, Elke G, Lindner M, Jonckheer J, De Waele E, Meybohm P, Modir R, Patel JJ, Christopher KB, Stoppe C. Medical nutrition therapy in patients receiving ECMO: Evidence-based guidance for clinical practice. JPEN J Parenter Enteral Nutr 2023; 47:220-235. [PMID: 36495215 DOI: 10.1002/jpen.2467] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Patients receiving extracorporeal membrane oxygenation (ECMO) inherit substantial disease-associated metabolic, endocrinologic, and immunologic modifications. Along with the technical components of ECMO, the aforementioned alterations may affect patients' needs and feasibility of adequate macronutrient and micronutrient supply and intake. Thus, patients receiving ECMO are at increased risk for iatrogenic malnutrition and require targeted individual medical nutrition therapy (MNT). However, specific recommendations for MNT in patients receiving ECMO are limited and, with some exceptions, based on an evidence base encompassing general patients who are critically ill. Consequently, clinician decision-making for MNT in patients receiving ECMO is unguided, which may further increase nutrition risk, culminating in iatrogenic malnutrition and ultimately affecting patient outcomes. The purpose of this article is to provide educational background and highlight specific points for MNT in adult patients receiving ECMO, which might serve as evidence-based guidance to develop institutional standard operating procedures and nutrition protocols for daily clinical practice.
Collapse
Affiliation(s)
- Ellen Dresen
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Omy Naidoo
- Newtricion Wellness Dieticians, PMB Healthcare Centre, Pietermaritzburg, South Africa
| | - Aileen Hill
- Department of Anesthesiology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Gunnar Elke
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Matthias Lindner
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Joop Jonckheer
- Department of Intensive Care, Universitair Ziekenhuis Brussel, Brussels Health Campus, Jette, Belgium
| | - Elisabeth De Waele
- Department of Intensive Care, Universitair Ziekenhuis Brussel, Brussels Health Campus, Jette, Belgium.,Department of Clinical Nutrition, Universitair Ziekenhuis Brussel, Brussels Health Campus, Jette, Belgium.,Vrije Universiteit Brussel, Brussels Health Campus, Jette, Belgium
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ranna Modir
- Stanford University Medical Center, Stanford, California, USA
| | - Jayshil J Patel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kenneth B Christopher
- Renal Division, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Christian Stoppe
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany.,Department of Cardiac Anesthesiology and Intensive Care Medicine, Charité Berlin, Berlin, Germany
| |
Collapse
|
5
|
Puthucheary ZA, Rice TW. Nutritional priorities in patients with severe COVID-19. Curr Opin Clin Nutr Metab Care 2022; 25:277-281. [PMID: 35703977 PMCID: PMC9247039 DOI: 10.1097/mco.0000000000000835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW The COVID-19 pandemic has altered the profile of critical care services internationally, as professionals around the globe have struggled to rise to the unprecedented challenge faced, both in terms of individual patient management and the sheer volume of patients that require treatment and management in intensive care. This review article sets out key priorities in nutritional interventions during the patient journey, both in the acute and recovery phases. RECENT FINDINGS The current review covers the care of the acutely unwell patient, and the evidence base for nutritional interventions in the COVID-19 population. One of the biggest differences in caring for critically ill patients with acute respiratory failure from COVID-19 is often the time prior to intubation. This represents specific nutritional challenges, as does nursing patients in the prone position or in the setting of limited resources. This article goes on to discuss nutritional support for COVID-19 sufferers as they transition through hospital wards and into the community. SUMMARY Nutritional support of patients with severe COVID-19 is essential. Given the longer duration of their critical illness, combined with hypermetabolism and energy expenditure, patients with COVID-19 are at increased risk for malnutrition during and after their hospital stay.
Collapse
Affiliation(s)
- Zudin A Puthucheary
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London
- Adult Critical Care Unit, Royal London Hospital, London, UK
| | - Todd W Rice
- Vanderbilt Institute for Clinical and Translational Research
- Division of Allergy, Department of Medicine, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Altered Serum Acylcarnitines Profile after a Prolonged Stay in Intensive Care. Nutrients 2022; 14:nu14051122. [PMID: 35268097 PMCID: PMC8912811 DOI: 10.3390/nu14051122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
A stay in intensive care unit (ICU) exposes patients to a risk of carnitine deficiency. Moreover, acylated derivates of carnitine (acylcarnitines, AC) are biomarkers for metabolic mitochondrial dysfunction that have been linked to post-ICU disorders. This study aimed to describe the AC profile of survivors of a prolonged ICU stay (≥7 days). Survivors enrolled in our post-ICU clinic between September 2020 and July 2021 were included. Blood analysis was routinely performed during the days after ICU discharge, focusing on metabolic markers and including AC profile. Serum AC concentrations were determined by LC-MS/MS and were compared to the reference ranges (RR) established from serum samples of 50 non-hospitalized Belgian adults aged from 18 to 81 years. A total 162 patients (65.4% males, age 67 (58.7−73) years) survived an ICU stay of 9.7 (7.1−19.3) days and were evaluated 5 (3−8) days after discharge. Their AC profile was significantly different compared to RR, mostly in terms of short chain AC: the sum of C3, C4 and C5 derivates reached 1.36 (0.98−1.99) and 0.86 (0.66−0.99) µmol/L respectively (p < 0.001). Free carnitine (C0) concentration of survivors (46.06 (35.04−56.35) µmol/L) was similar to RR (43.64 (36.43−52.96) µmol/L) (p = 0.55). C0 below percentile 2.5 of RR was observed in 6/162 (3.7%) survivors. Their total AC/C0 ratio was 0.33 (0.22−0.42). A ratio above 0.4 was observed in 45/162 (27.8%) patients. In ICU survivors, carnitine deficiency was rare, but AC profile was altered and AC/C0 ratio was abnormal in more than 25%. The value of AC profile as a marker of post-ICU dysmetabolism needs further investigations.
Collapse
|
7
|
Kalyesubula M, Mopuri R, Rosov A, Bommel GV, Dvir H. Metabolic Effects of Vitamin B1 Therapy under Overnutrition and Undernutrition Conditions in Sheep. Nutrients 2021; 13:nu13103463. [PMID: 34684464 PMCID: PMC8540229 DOI: 10.3390/nu13103463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022] Open
Abstract
As a precursor for a universal metabolic coenzyme, vitamin B1, also known as thiamine, is a vital nutrient in all living organisms. We previously found that high-dose thiamine therapy prevents overnutrition-induced hepatic steatosis in sheep by enhancing oxidative catabolism. Based on this capacity, we hypothesized that thiamine might also reduce whole-body fat and weight. To test it, we investigated the effects of high-dose thiamine treatment in sheep under overnutrition and calorie-restricted undernutrition to respectively induce positive energy balance (PEB) and negative energy balance (NEB). Eighteen mature ewes were randomly assigned to three treatment groups (n = 6 each). The control group (CG) was administered daily with subcutaneous saline, whereas the T5 and T10 groups were administered daily with equivoque of saline containing 5 mg/kg and 10 mg/kg of thiamine, respectively. Bodyweight and blood biochemistry were measured twice a week for a period of 22 days under PEB and for a consecutive 30 days under NEB. Surprisingly, despite the strong effect of thiamine on liver fat, no effect on body weight or blood glucose was detectable. Thiamine did, however, increase plasma concentration of non-esterified fatty acids (NEFA) during NEB (575.5 ± 26.7, 657.6 ± 29.9 and 704.9 ± 26.1 µEqL−1 for CG, T5, and T10, respectively: p < 0.05), thereby favoring utilization of fatty acids versus carbohydrates as a source of energy. Thiamine increased serum creatinine concentrations (p < 0.05), which paralleled a trending increase in urea (p = 0.09). This may indicate an increase in muscle metabolism by thiamine. Reduction of fat content by thiamine appears more specific to the liver than to adipose tissue. Additional studies are needed to evaluate the potential implications of high-dose vitamin B1 therapy in muscle metabolism.
Collapse
Affiliation(s)
- Mugagga Kalyesubula
- Agricultural Research Organization—Volcani Institute, Institute of Animal Science, Rishon LeZion 7552809, Israel; (M.K.); (R.M.); (A.R.); (G.V.B.)
- Department of Animal Science, the Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ramgopal Mopuri
- Agricultural Research Organization—Volcani Institute, Institute of Animal Science, Rishon LeZion 7552809, Israel; (M.K.); (R.M.); (A.R.); (G.V.B.)
| | - Alexander Rosov
- Agricultural Research Organization—Volcani Institute, Institute of Animal Science, Rishon LeZion 7552809, Israel; (M.K.); (R.M.); (A.R.); (G.V.B.)
| | - Guy Van Bommel
- Agricultural Research Organization—Volcani Institute, Institute of Animal Science, Rishon LeZion 7552809, Israel; (M.K.); (R.M.); (A.R.); (G.V.B.)
| | - Hay Dvir
- Agricultural Research Organization—Volcani Institute, Institute of Animal Science, Rishon LeZion 7552809, Israel; (M.K.); (R.M.); (A.R.); (G.V.B.)
- Correspondence:
| |
Collapse
|