1
|
Wang Z, Liu C, Hu K, Zuo M, Tian Z, Wei Y, Zhou Q, Li Q. Postoperative delayed gastric emptying: may gut microbiota play a role? Front Cell Infect Microbiol 2024; 14:1449530. [PMID: 39193506 PMCID: PMC11347441 DOI: 10.3389/fcimb.2024.1449530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Postoperative delayed gastric emptying is a prevalent complication following surgical procedures, imposing heavy physical and financial burdens on patients. However, current treatment options remain suboptimal. In recent years, an increasing number of studies have highlighted that the gut microbiota and its metabolites are closely associated with postoperative complications. Various factors can disrupt the gut microbiome after surgery. This review discusses the potential mechanisms by which the gut microbiota and their metabolites may contribute to the pathogenesis of postoperative delayed gastric emptying. However, the current knowledge base is limited in terms of fully understanding the exact mechanisms involved. It is therefore evident that further research is required to fully elucidate the role of the gut microbiome in postoperative delayed gastric emptying, with the aim of uncovering new possibilities for preventive measures and therapeutic treatments.
Collapse
Affiliation(s)
- Zhiyi Wang
- Graduate School of Beijing, University of Chinese Medicine, Beijing, China
- Department of Oncology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chuanbo Liu
- Graduate School of Beijing, University of Chinese Medicine, Beijing, China
| | - Kaiwen Hu
- Graduate School of Beijing, University of Chinese Medicine, Beijing, China
| | - Minghuan Zuo
- Graduate School of Beijing, University of Chinese Medicine, Beijing, China
| | - Zhen Tian
- Graduate School of Beijing, University of Chinese Medicine, Beijing, China
| | - Yue Wei
- Graduate School of Beijing, University of Chinese Medicine, Beijing, China
| | - Qin Zhou
- Graduate School of Beijing, University of Chinese Medicine, Beijing, China
| | - Quanwang Li
- Graduate School of Beijing, University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Suleiman AS, Abbass M, Hossain M, Choudhary P, Bhattacharya P, Islam MA. Impact of antibiotic-coated sutures on surgical site infections: a second-order meta-analysis. Int J Surg 2024; 110:507-519. [PMID: 37830948 PMCID: PMC10793740 DOI: 10.1097/js9.0000000000000822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/24/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Surgical site infections (SSIs) pose a global challenge, impacting patients and healthcare expenditures. This second-order meta-analysis endeavors to assess the efficacy of antibiotic sutures in averting SSIs by amalgamating data from various meta-studies. MATERIALS AND METHODS This research adhered to the PRISMA 2020 guidelines. The quality and comprehensiveness of the encompassed meta-analyses were assessed through the QUOROM checklist and AMSTAR techniques. The primary study overlap was evaluated via measures such as pairwise intersection heat maps, corrected covered area, and the citation matrix of evidence. The statistical power at the study-level was determined utilizing the meta-meta package. Data synthesis employed random and fixed effects models at a 95% CI. A meta-regression analysis was conducted to explore potential correlations between the CDC classification of SSIs, trial types, and the observed effect sizes in the studies. RESULTS This investigation revealed a significant reduction in SSI rates due to antimicrobial-coated sutures, evidenced by a relative risk (RR) of 0.68 (95% CI: 0.59-0.76), with a prediction interval of 0.38-1.19. The analysis encompassed 18 studies with 22 meta-analyses, demonstrating a median QUOROM score of 13.6 out of 18 and an AMSTAR score of 9.1 out of 11. The presence of moderate heterogeneity was noted ( Q =106.611, I2 =54.038%), with nonrandomized controlled trials exhibiting an RR of 0.56 (95% CI: 0.39-0.80), and RCTs displaying an RR of 0.71 (95% CI: 0.63-0.81). Subgroup analysis unveiled variable RR reductions for specific surgical procedures. CONCLUSION Antimicrobial-coated sutures offer a promising approach to mitigating SSIs risk. However, their efficacy is optimally realized when employed in conjunction with other robust practices.
Collapse
Affiliation(s)
- Adeiza S. Suleiman
- Department of Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Mortada Abbass
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Maqsud Hossain
- University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Priyanka Choudhary
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda, Punjab, India
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj 2310, Bangladesh
| | - Prosun Bhattacharya
- Corresponding author. Address: Department of Microbiology, President Abdul Hamid Medical College Hospital, Kishoreganj (PAHMCH) Senior Research Assistant, NSTU COVID-19 Lab, Noakhali, Bangladesh. Tel.: +91 9871608125. E-mail: (M.A. Islam); Department of Clinical Pharmacy and Pharmacy Practice, Faculty Pharmaceutical Science, UDUS. Tel.: +91 9871608125. E-mail: (S.S. Adeiza)
| | - Md. Aminul Islam
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj 2310, Bangladesh
- COVID-19 Diagnostic lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| |
Collapse
|
3
|
Lu J, Hou W, Gao S, Zhang Y, Zong Y. The Role of Gut Microbiota—Gut—Brain Axis in Perioperative Neurocognitive Dysfunction. Front Pharmacol 2022; 13:879745. [PMID: 35774608 PMCID: PMC9237434 DOI: 10.3389/fphar.2022.879745] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/18/2022] [Indexed: 12/02/2022] Open
Abstract
With the aging of the world population and advances in medical and health technology, more and more elderly patients are undergoing anesthesia and surgery, and perioperative neurocognitive dysfunction (PND) is receiving increasing attention. The latest definition of PND, published simultaneously in November 2018 in 6 leading journals in the field of anesthesiology, clarifies that PND includes preoperatively cognitive impairment, postoperative delirium, delayed neurocognitive recovery, and postoperative cognitive dysfunction and meets the diagnostic criteria for neurocognitive impairment in the Diagnostic and Statistical Manual of Mental Disorders -fifth edition (DSM-5). The time frame for PND includes preoperatively and within 12 months postoperatively. Recent studies have shown that gut microbiota regulates central nervous function and behavior through the gut microbiota - gut - brain axis, but the role of the axis in the pathogenesis of PND remains unclear. Therefore, this article reviews the mechanism of the role of gut microbiota-gut-brain axis in PND, so as to help explore reasonable early treatment strategies.
Collapse
Affiliation(s)
- Jian Lu
- Department of Anesthesiology, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Wenlong Hou
- Department of Anesthesiology, Bengbu Medical College, Bengbu, China
| | - Sunan Gao
- Department of Anesthesiology, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Ye Zhang
- Department of Anesthesiology, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Youming Zong
- Department of Anesthesiology, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- Department of Anesthesiology, Bengbu Medical College, Bengbu, China
- *Correspondence: Youming Zong,
| |
Collapse
|
4
|
Collier CA, Mendiondo C, Raghavan S. Tissue engineering of the gastrointestinal tract: the historic path to translation. J Biol Eng 2022; 16:9. [PMID: 35379299 PMCID: PMC8981633 DOI: 10.1186/s13036-022-00289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/08/2022] [Indexed: 11/15/2022] Open
Abstract
The gastrointestinal (GI) tract is imperative for multiple functions including digestion, nutrient absorption, and timely waste disposal. The central feature of the gut is peristalsis, intestinal motility, which facilitates all of its functions. Disruptions in GI motility lead to sub-optimal GI function, resulting in a lower quality of life in many functional GI disorders. Over the last two decades, tissue engineering research directed towards the intestine has progressed rapidly due to advances in cell and stem-cell biology, integrative physiology, bioengineering and biomaterials. Newer biomedical tools (including optical tools, machine learning, and nuanced regenerative engineering approaches) have expanded our understanding of the complex cellular communication within the GI tract that lead to its orchestrated physiological function. Bioengineering therefore can be utilized towards several translational aspects: (i) regenerative medicine to remedy/restore GI physiological function; (ii) in vitro model building to mimic the complex physiology for drug and pharmacology testing; (iii) tool development to continue to unravel multi-cell communication networks to integrate cell and organ-level physiology. Despite the significant strides made historically in GI tissue engineering, fundamental challenges remain including the quest for identifying autologous human cell sources, enhanced scaffolding biomaterials to increase biocompatibility while matching viscoelastic properties of the underlying tissue, and overall biomanufacturing. This review provides historic perspectives for how bioengineering has advanced over time, highlights newer advances in bioengineering strategies, and provides a realistic perspective on the path to translation.
Collapse
Affiliation(s)
- Claudia A Collier
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, 3120 TAMU, College Station, TX, 77843, USA
| | - Christian Mendiondo
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, 3120 TAMU, College Station, TX, 77843, USA
| | - Shreya Raghavan
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, 3120 TAMU, College Station, TX, 77843, USA.
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
5
|
Lederer AK, Chikhladze S, Kohnert E, Huber R, Müller A. Current Insights: The Impact of Gut Microbiota on Postoperative Complications in Visceral Surgery-A Narrative Review. Diagnostics (Basel) 2021; 11:diagnostics11112099. [PMID: 34829446 PMCID: PMC8625751 DOI: 10.3390/diagnostics11112099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022] Open
Abstract
Postoperative complications are a major problem occurring in up to 50% of patients undergoing major abdominal surgery. Occurrence of postoperative complications is associated with a significantly higher morbidity and mortality in affected patients. The most common postoperative complications are caused by an infectious genesis and include anastomotic leakage in case of gastrointestinal anastomosis and surgical site infections. Recent research highlighted the importance of gut microbiota in health and disease. It is plausible that the gut microbiota also plays a pivotal role in the development of postoperative complications. This narrative review critically summarizes results of recent research in this particular field. The review evaluates the role of gut microbiota alteration in postoperative complications, including postoperative ileus, anastomotic leakage, and surgical site infections in visceral surgery. We tried to put a special focus on a potential diagnostic value of pre- and post-operative gut microbiota sampling showing that recent data are inhomogeneous to identify a high-risk microbial profile for development of postoperative complications.
Collapse
Affiliation(s)
- Ann-Kathrin Lederer
- Center for Complementary Medicine, Department of Medicine II, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (R.H.); (A.M.)
- Chirurgische Klinik, Evangelisches Diakoniekrankenhaus Freiburg, 79106 Freiburg, Germany
- Correspondence: ; Tel.: +49-761-2708-2010
| | - Sophia Chikhladze
- Department of General and Visceral Surgery, Medical Center—University of Freiburg, 79106 Freiburg, Germany;
| | - Eva Kohnert
- Institute of Medical Biometry and Statistics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Roman Huber
- Center for Complementary Medicine, Department of Medicine II, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (R.H.); (A.M.)
| | - Alexander Müller
- Center for Complementary Medicine, Department of Medicine II, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (R.H.); (A.M.)
| |
Collapse
|
6
|
Bornbusch SL, Harris RL, Grebe NM, Roche K, Dimac-Stohl K, Drea CM. Antibiotics and fecal transfaunation differentially affect microbiota recovery, associations, and antibiotic resistance in lemur guts. Anim Microbiome 2021; 3:65. [PMID: 34598739 PMCID: PMC8485508 DOI: 10.1186/s42523-021-00126-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 09/19/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Antibiotics alter the diversity, structure, and dynamics of host-associated microbial consortia, including via development of antibiotic resistance; however, patterns of recovery from microbial imbalances and methods to mitigate associated negative effects remain poorly understood, particularly outside of human-clinical and model-rodent studies that focus on outcome over process. To improve conceptual understanding of host-microbe symbiosis in more naturalistic contexts, we applied an ecological framework to a non-traditional, strepsirrhine primate model via long-term, multi-faceted study of microbial community structure before, during, and following two experimental manipulations. Specifically, we administered a broad-spectrum antibiotic, either alone or with subsequent fecal transfaunation, to healthy, male ring-tailed lemurs (Lemur catta), then used 16S rRNA and shotgun metagenomic sequencing to longitudinally track the diversity, composition, associations, and resistomes of their gut microbiota both within and across baseline, treatment, and recovery phases. RESULTS Antibiotic treatment resulted in a drastic decline in microbial diversity and a dramatic alteration in community composition. Whereas microbial diversity recovered rapidly regardless of experimental group, patterns of microbial community composition reflected long-term instability following treatment with antibiotics alone, a pattern that was attenuated by fecal transfaunation. Covariation analysis revealed that certain taxa dominated bacterial associations, representing potential keystone species in lemur gut microbiota. Antibiotic resistance genes, which were universally present, including in lemurs that had never been administered antibiotics, varied across individuals and treatment groups. CONCLUSIONS Long-term, integrated study post antibiotic-induced microbial imbalance revealed differential, metric-dependent evidence of recovery, with beneficial effects of fecal transfaunation on recovering community composition, and potentially negative consequences to lemur resistomes. Beyond providing new perspectives on the dynamics that govern host-associated communities, particularly in the Anthropocene era, our holistic study in an endangered species is a first step in addressing the recent, interdisciplinary calls for greater integration of microbiome science into animal care and conservation.
Collapse
Affiliation(s)
| | - Rachel L. Harris
- Department of Evolutionary Anthropology, Duke University, Durham, USA
| | - Nicholas M. Grebe
- Department of Evolutionary Anthropology, Duke University, Durham, USA
| | - Kimberly Roche
- Program in Computational Biology & Bioinformatics, Duke University, Durham, USA
| | | | - Christine M. Drea
- Department of Evolutionary Anthropology, Duke University, Durham, USA
| |
Collapse
|
7
|
Shin SY, Hussain Z, Lee YJ, Park H. An altered composition of fecal microbiota, organic acids, and the effect of probiotics in the guinea pig model of postoperative ileus. Neurogastroenterol Motil 2021; 33:e13966. [PMID: 32815235 DOI: 10.1111/nmo.13966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/15/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The aim of this study is to investigate the altered composition of fecal microbiota, organic acids, and the effect of probiotics in the guinea pig model of the postoperative ileus (POI). METHODS A laparotomy with cecal manipulation was performed to induce POI in guinea pigs. Fecal pellets were collected before the operation (the baseline) and 1, 3, and 5 days after the operation. The extracted fecal DNA was amplified and sequenced using the Illumina MiSeq sequencing system. The same POI procedures were performed after oral pretreatment of the probiotics for 7 days before operation. The effect of the probiotics on the selected taxa and fecal acetate were evaluated, as were the butyrate levels. The colonic transit was assessed by measurement of the fecal pellet output. KEY RESULTS The communities of the baseline and POI groups indicated significantly distinct composition. The genera Bifidobacterium and Lactobacillus were more abundant in the baseline group compared with the POI groups, and Bacteroides and Blautia were more abundant in the POI groups. Decreased abundances of the species Bifidobacterium bifidum and Bifidobacterium longum after the POI procedure were significantly increased in the probiotics group. The decreased fecal butyrate level after the POI procedure was significantly increased, and colonic transit was significantly improved in the probiotics group. CONCLUSIONS AND INFERENCES POI induces gut bacterial dysbiosis. Moreover, pretreatment of probiotics before operation restores the beneficial bacterial species, butyrate production, and bowel movement. The modulation of gut microbiota may help the treatment and prevention of POI.
Collapse
Affiliation(s)
- Seung Yong Shin
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Zahid Hussain
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Ju Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyojin Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Jiang XL, Gu XY, Zhou XX, Chen XM, Zhang X, Yang YT, Qin Y, Shen L, Yu WF, Su DS. Intestinal dysbacteriosis mediates the reference memory deficit induced by anaesthesia/surgery in aged mice. Brain Behav Immun 2019; 80:605-615. [PMID: 31063849 DOI: 10.1016/j.bbi.2019.05.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/17/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is associated with increased morbidity and mortality and has become a major concern for patients and caregivers. POCD is most common in older patients. Previous studies demonstrated that the gut microbiome affects cognitive function and behaviour, and perioperative factors, including the operation itself, antibiotics, opioids or acid-inducing drugs, affect the gut microbiome. Thus, we hypothesised that intestinal dysbacteriosis caused by anaesthesia/surgery induces POCD. METHODS Tibial fracture internal fixation was performed in 18-month-old C57BL/6 mice under isoflurane anaesthesia to establish the POCD model. The Morris water maze was used to measure reference memory after anaesthesia/surgery. High-throughput sequencing of 16S rRNA from faecal samples was used to investigate changes in the abundance of intestinal bacteria after anaesthesia/surgery. To confirm the role of the gut microbiome in POCD, we pretreated mice with compound antibiotics or mixed probiotics (VSL#3). Anaesthesia/surgery impaired reference memory and induced intestinal dysbacteriosis in aged mice. RESULTS The 16S rRNA sequencing data revealed 37 genera (18 families) of bacteria that changed in abundance after anaesthesia/surgery. Pretreating mice with compound antibiotics or mixed probiotics (VSL#3) prevented the learning and memory deficits induced by anaesthesia/surgery. We further conducted quantitative real-time polymerase chain reaction (qRT-PCR) of 22 common types of bacteria among the 37 total types to verify the results of bacterial flora changes after anaesthesia/surgery. Numbers of 8 types of bacteria changed after anaesthesia/surgery but returned to normal after treatment with a mix of probiotics. CONCLUSIONS Our data suggest that deficits in reference memory induced by anaesthesia/surgery are mediated by intestinal dysbacteriosis.
Collapse
Affiliation(s)
- X L Jiang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai 200127, China
| | - X Y Gu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai 200127, China
| | - X X Zhou
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai 200127, China
| | - X M Chen
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai 200127, China
| | - X Zhang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai 200127, China
| | - Y T Yang
- Department of Anesthesiology, First Hospital in Quanzhou City of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Y Qin
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai 200127, China
| | - L Shen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - W F Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai 200127, China
| | - D S Su
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai 200127, China.
| |
Collapse
|
9
|
Lederer AK, Schmucker C, Kousoulas L, Fichtner-Feigl S, Huber R. Naturopathic Treatment and Complementary Medicine in Surgical Practice. DEUTSCHES ARZTEBLATT INTERNATIONAL 2019; 115:815-821. [PMID: 30678751 DOI: 10.3238/arztebl.2018.0815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/02/2018] [Accepted: 09/06/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Many patients in Germany use naturopathic treatments and complementary medicine. Surveys have shown that many also use them as a concomitant treatment to surgery. METHODS Multiple databases were systematically searched for systematic reviews, controlled trials, and experimental studies concerning the use of naturopathic treatments and complementary medicine in the management of typical post-operative problems (PROSPERO CRD42018095330). RESULTS Of the 387 publications identified by the search, 76 fulfilled the inclusion criteria. In patients with abnormal gastrointestinal activity, acupuncture can improve motility, ease the passing of flatus, and lead to earlier defecation. Acupuncture and acupressure can reduce postoperative nausea and vomiting, as well as pain. More-over,aromatherapy and music therapy seem to reduce pain, stress and anxiety and to improve sleep. Further studies are needed to determine whether phytotherapeutic treatments are effective for the improvement of gastrointestinal function or the reduction of stress. It also remains unclear whether surgical patients can benefit from the methods of mind body medicine. CONCLUSION Certain naturopathic treatments and complementary medical methods may be useful in postoperative care and deserve more intensive study. In the publications consulted for this review, no serious side effects were reported.
Collapse
Affiliation(s)
- Ann-Kathrin Lederer
- Center for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg; Institute for Evidence in Medicine (for Cochrane Germany Foundation), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg; Department for General and Visceral Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg
| | | | | | | | | |
Collapse
|
10
|
Hajjar R, Santos MM, Dagbert F, Richard CS. Current evidence on the relation between gut microbiota and intestinal anastomotic leak in colorectal surgery. Am J Surg 2019; 218:1000-1007. [PMID: 31320106 DOI: 10.1016/j.amjsurg.2019.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/29/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Anastomotic leak (AL) is a major complication in colorectal surgery. It worsens morbidity, mortality and oncological outcomes in colorectal cancer. Some evidence suggests a potential effect of the intestinal microbiome on wound healing. This review aims to provide a comprehensive review on historical and current evidence regarding the relation between the gastrointestinal microbiota and AL in colorectal surgery, and the potential microbiota-modifying effect of some perioperative commonly used measures. DATA SOURCES A comprehensive search was conducted in Pubmed, Medline and Embase for historical and current clinical and animal studies addressing perioperative intestinal microbiota evaluation, intestinal healing and AL. CONCLUSIONS Evidence on microbes' role in AL is mainly derived from animal experiments. The microbiota's composition and implications are poorly understood in surgical patients. Elaborate microbiota sequencing is required in colorectal surgery to identify potentially beneficial microbial profiles that could lead to specific perioperative microbiome-altering measures and improve surgical and oncological outcomes.
Collapse
Affiliation(s)
- Roy Hajjar
- Digestive Surgery Service, Centre Hospitalier de l'Université de Montréal (CHUM), 1000 rue Saint-Denis, Montréal, Québec, H2X 0C1, Canada; Department of Surgery, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada.
| | - Manuela M Santos
- Nutrition and Microbiome Laboratory, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue Saint-Denis, Montréal, Québec, QC H2X 0A9, Canada; Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - François Dagbert
- Digestive Surgery Service, Centre Hospitalier de l'Université de Montréal (CHUM), 1000 rue Saint-Denis, Montréal, Québec, H2X 0C1, Canada; Department of Surgery, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Carole S Richard
- Digestive Surgery Service, Centre Hospitalier de l'Université de Montréal (CHUM), 1000 rue Saint-Denis, Montréal, Québec, H2X 0C1, Canada; Department of Surgery, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
11
|
Turner MC, Migaly J. Response to Slim et al. Colorectal Dis 2018; 20:959-960. [PMID: 30171741 DOI: 10.1111/codi.14395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 02/08/2023]
Affiliation(s)
- M C Turner
- Colon and Rectal Surgery, Department of Surgery, Duke University Medical Centre, Durham, North Carolina, USA
| | - J Migaly
- Colon and Rectal Surgery, Department of Surgery, Duke University Medical Centre, Durham, North Carolina, USA
| |
Collapse
|
12
|
Lederer AK, Pisarski P, Kousoulas L, Fichtner-Feigl S, Hess C, Huber R. Postoperative changes of the microbiome: are surgical complications related to the gut flora? A systematic review. BMC Surg 2017; 17:125. [PMID: 29202875 PMCID: PMC5715992 DOI: 10.1186/s12893-017-0325-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The purpose of this review was to identify the relationship between the gut microbiome and the development of postoperative complications like anastomotic leakage or a wound infection. Recent reviews focusing on underlying molecular biology suggested that postoperative complications might be influenced by the patients' gut flora. Therefore, a review focusing on the available clinical data is needed. METHODS In January 2017 a systematic search was carried out in Medline and WebOfScience to identify all clinical studies, which investigated postoperative complications after gastrointestinal surgery in relation to the microbiome of the gut. RESULTS Of 337 results 10 studies were included into this analysis after checking for eligibility. In total, the studies comprised 677 patients. All studies reported a postoperative change of the gut flora. In five studies the amount of bacteria decreased to different degrees after surgery, but only one study found a significant reduction. Surgical procedures tended to result in an increase of potentially pathogenic bacteria and a decrease of Lactobacilli and Bifidobacteria. The rate of infectious complications was lower in patients treated with probiotics/symbiotics compared to control groups without a clear relation to the systemic inflammatory response. The treatment with synbiotics/probiotics in addition resulted in faster recovery of bowel movement and a lower rate of postoperative diarrhea and abdominal cramping. CONCLUSIONS There might be a relationship between the gut flora and the development of postoperative complications. Due to methodological shortcomings of the included studies and uncontrolled bias/confounding factors there remains a high level of uncertainty.
Collapse
Affiliation(s)
- Ann-Kathrin Lederer
- Center for Complementary Medicine, Department of Environmental Health Sciences and Hospital Infection Control, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Straße 115b, 79106 Freiburg im Breisgau, Germany
| | - Przemyslaw Pisarski
- Department for General and Visceral Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lampros Kousoulas
- Department for General and Visceral Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefan Fichtner-Feigl
- Department for General and Visceral Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carolin Hess
- Department for Thoracic Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roman Huber
- Center for Complementary Medicine, Department of Environmental Health Sciences and Hospital Infection Control, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Straße 115b, 79106 Freiburg im Breisgau, Germany
| |
Collapse
|
13
|
Alverdy JC, Luo JN. The Influence of Host Stress on the Mechanism of Infection: Lost Microbiomes, Emergent Pathobiomes, and the Role of Interkingdom Signaling. Front Microbiol 2017; 8:322. [PMID: 28303126 PMCID: PMC5332386 DOI: 10.3389/fmicb.2017.00322] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/15/2017] [Indexed: 01/10/2023] Open
Abstract
Mammals constantly face stressful situations, be it extended periods of starvation, sleep deprivation from fear of predation, changing environmental conditions, or loss of habitat. Today, mammals are increasingly exposed to xenobiotics such as pesticides, pollutants, and antibiotics. Crowding conditions such as those created for the purposes of meat production from animals or those imposed upon humans living in urban environments or during world travel create new levels of physiologic stress. As such, human progress has led to an unprecedented exposure of both animals and humans to accidental pathogens (i.e., those that have not co-evolved with their hosts). Strikingly missing in models of infection pathogenesis are the various elements of these conditions, in particular host physiologic stress. The compensatory factors released in the gut during host stress have profound and direct effects on the metabolism and virulence of the colonizing microbiota and the emerging pathobiota. Here, we address unanswered questions to highlight the relevance and importance of incorporating host stress to the field of microbial pathogenesis.
Collapse
Affiliation(s)
- John C Alverdy
- Sarah and Harold Lincoln Thompson Professor of Surgery, Pritzker School of Medicine, The University of Chicago Chicago, IL, USA
| | - James N Luo
- Pritzker School of Medicine, The University of Chicago Chicago, IL, USA
| |
Collapse
|