1
|
Gao T, Ou X, Miao J, Qin Y. Quantification of MDR-TB drug JBD0131 and its metabolite in plasma via UPLC-MS/MS: application in first-in-human study. Bioanalysis 2024:1-12. [PMID: 39373613 DOI: 10.1080/17576180.2024.2404311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024] Open
Abstract
Aim: JBD0131, a novel anti-multidrug-resistant tuberculosis (MDR-TB) drug, can target and inhibit the synthesis of mycolic acids, which are crucial components of the cell wall of the Mycobacterium tuberculosis complex. To support the results of this clinical trial in healthy subjects, development of a specific and accurate quantification method for detecting JBD0131 and its metabolite DM131 in human plasma is needed.Materials & methods: Samples with prior added stabilizer were pretreated by protein precipitation method and the extracts were subjected to ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The m/z transitions for the precursor/product ion pairs were 402.1/273 for JBD0131, 333.1/273 for DM131 and 386.1/257 for the internal standard (IS).Results: This method showed good linearity from 1 to 2000 ng/ml for JBD0131 and 0.25 to 500 ng/ml for DM131 and was validated in terms of selectivity, linearity, accuracy, precision, matrix effect, recovery of pretreament and stability.Conclusion: This method was sensitive and specific for measuring the plasma concentrations of JBD0131 and its metabolites. And it was applied for the investigation of the pharmacokinetics of JBD0131 and DM131 in a clinical trial.
Collapse
Affiliation(s)
- Tiantao Gao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoxue Ou
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jia Miao
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongping Qin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Zhou J, Li J, Hu Y, Li S. Epidemiological characteristics, diagnosis and treatment effect of rifampicin-resistant pulmonary tuberculosis (RR-PTB) in Guizhou Province. BMC Infect Dis 2024; 24:1058. [PMID: 39333894 PMCID: PMC11429120 DOI: 10.1186/s12879-024-09976-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Rifampicin-resistant pulmonary tuberculosis (RR-PTB) presents a significant threat to global public health security. China bears a substantial burden of RR-PTB cases globally, with Guizhou Province experiencing particularly alarming trends, marked by a continual increase in patient numbers. Understanding the population characteristics and treatment modalities for RR-PTB is crucial for mitigating morbidity and mortality associated with this disease. METHODS We gathered epidemiological, diagnostic, and treatment data of all RR-PTB cases recorded in Guizhou Province from January 1, 2017 to December 31, 2023. Utilizing composition ratios as the analytical metric, we employed Chi-square tests to examine the spatiotemporal distribution patterns of RR-PTB patients and the evolving trends among different patient classifications over the study period. RESULTS In our study, 3396 cases of RR-PTB were analyzed, with an average age of 45 years. The number of RR-PTB patients rose significantly from 176 in 2017 to 960 in 2023, peaking notably among individuals aged 23-28 and 44-54, with a rising proportion in the 51-80 age group (P < 0.001). Since 2021, there has been a notable increase in the proportion of female patients. While individuals of Han ethnic group comprised the largest group, their proportion decreased over time (P < 0.001). Conversely, the Miao ethnicity showed an increasing trend (P < 0.05). The majority of patients were farmers, with their proportion showing an upward trajectory (P < 0.001), while students represented 4.33% of the cases. Geographically, most patients were registered in Guiyang and Zunyi, with a declining trend (P < 0.001), yet household addresses primarily clustered in Bijie, Tongren, and Zunyi. The proportion of floating population patients gradually decreased, alongside an increase in newly treated patients and those without prior anti-tuberculosis therapy. Additionally, there was a notable rise in molecular biological diagnostic drug sensitivity (real-time PCR and melting curve analysis) (P < 0.001). However, the cure rate declined, coupled with an increasing proportion of RR-PTB patients lost to follow-up and untreated (P < 0.05). CONCLUSIONS Enhanced surveillance is crucial for detecting tuberculosis patients aged 23-28 and 44-54 years. The distribution of cases varies among nationalities and occupations, potentially influenced by cultural and environmental factors. Regional patterns in RR-PTB incidence suggest tailored prevention and control strategies are necessary. Despite molecular tests advances, challenges persist with low cure rates and high loss to follow-up. Strengthening long-term management, resource allocation, and social support systems for RR-PTB patients is essential.
Collapse
Affiliation(s)
- Jian Zhou
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang city, 550025, Guizhou Province, China
- Guizhou Center for Disease Control and Prevention, No.73, Bageyan Road, Yunyan District, Guiyang city, 550004, Guizhou Province, China
| | - Jinlan Li
- Guizhou Center for Disease Control and Prevention, No.73, Bageyan Road, Yunyan District, Guiyang city, 550004, Guizhou Province, China.
| | - Yong Hu
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang city, 550025, Guizhou Province, China.
| | - Shijun Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang city, 550025, Guizhou Province, China.
- Guizhou Center for Disease Control and Prevention, No.73, Bageyan Road, Yunyan District, Guiyang city, 550004, Guizhou Province, China.
| |
Collapse
|
3
|
Chikhale RV, Pawar SP, Kolpe MS, Shinde OD, Dahlous KA, Mohammad S, Patil PC, Bhowmick S. Identification of mycobacterial Thymidylate kinase inhibitors: a comprehensive pharmacophore, machine learning, molecular docking, and molecular dynamics simulation studies. Mol Divers 2024; 28:1947-1964. [PMID: 39152354 PMCID: PMC11449957 DOI: 10.1007/s11030-024-10967-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Thymidylate kinase (TMK) is a pivotal enzyme in Mycobacterium tuberculosis (Mtb), crucial for phosphorylating thymidine monophosphate (dTMP) to thymidine diphosphate (dTDP), thereby playing a critical role in DNA biosynthesis. Dysregulation or inhibition of TMK activity disrupts DNA replication and cell division, making it an attractive target for anti-tuberculosis drug development. In this study, the statistically validated pharmacophore mode was developed from a set of known TMK inhibitors. Further, the robust pharmacophore was considered for screening the Enamine database. The chemical space was reduced through multiple molecular docking approaches, pharmacokinetics, and absolute binding energy estimation. Two different molecular docking algorithms favor the strong binding affinity of the proposed molecules towards TMK. Machine learning-based absolute binding energy also showed the potentiality of the proposed molecules. The binding interactions analysis exposed the strong binding affinity between the proposed molecules and active site amino residues of TMK. Several statistical parameters from all atoms MD simulation explained the stability between proposed molecules and TMK in the dynamic states. The MM-GBSA approach also found a strong binding affinity for each proposed molecule. Therefore, the proposed molecules might be crucial TMK inhibitors for managing Mtb inhibition subjected to in vitro/in vivo validations.
Collapse
Affiliation(s)
- Rupesh V Chikhale
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, London, UK.
| | - Surbhi Pravin Pawar
- SilicoScientia Private Limited, Nagananda Commercial Complex, No. 07/3, 15/1, 18th Main Road, Jayanagar 9th Block, Bengaluru, 560041, India
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune-Satara Road, Pune, India
| | - Mahima Sudhir Kolpe
- SilicoScientia Private Limited, Nagananda Commercial Complex, No. 07/3, 15/1, 18th Main Road, Jayanagar 9th Block, Bengaluru, 560041, India
| | - Omkar Dilip Shinde
- SilicoScientia Private Limited, Nagananda Commercial Complex, No. 07/3, 15/1, 18th Main Road, Jayanagar 9th Block, Bengaluru, 560041, India
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune-Satara Road, Pune, India
| | - Kholood A Dahlous
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saikh Mohammad
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Pritee Chunarkar Patil
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune-Satara Road, Pune, India
| | - Shovonlal Bhowmick
- SilicoScientia Private Limited, Nagananda Commercial Complex, No. 07/3, 15/1, 18th Main Road, Jayanagar 9th Block, Bengaluru, 560041, India
| |
Collapse
|
4
|
Felgueiras HP. Special Issue "Antimicrobial Biomaterials: Recent Progress". Int J Mol Sci 2024; 25:7153. [PMID: 39000256 PMCID: PMC11241111 DOI: 10.3390/ijms25137153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Biomaterials have demonstrated their ability to serve as effective drug delivery platforms, enabling targeted and localized administration of therapeutic agents [...].
Collapse
Affiliation(s)
- Helena P Felgueiras
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| |
Collapse
|
5
|
Karnan A, Jadhav U, Ghewade B, Ledwani A, Shivashankar P. A Comprehensive Review on Long vs. Short Regimens in Multidrug-Resistant Tuberculosis (MDR-TB) Under Programmatic Management of Drug-Resistant Tuberculosis (PMDT). Cureus 2024; 16:e52706. [PMID: 38384625 PMCID: PMC10879947 DOI: 10.7759/cureus.52706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
This comprehensive review delves into the intricate landscape of multidrug-resistant tuberculosis (MDR-TB) treatment within the programmatic management of drug-resistant tuberculosis (PMDT) framework. MDR-TB poses a substantial global health threat, necessitating targeted approaches for effective management. The analysis explores the historical evolution, efficacy, safety profiles, and implementation challenges associated with long and short regimens. The findings underscore the importance of individualized clinical practices, considering patient-specific factors, and the need for ongoing monitoring within PMDT programs. Recommendations advocate for integrating advanced diagnostics, continuous surveillance, and training for healthcare professionals. The review concludes with a nuanced outlook on long versus short regimens, emphasizing a balanced approach and the imperative role of collaborative efforts in shaping the future of MDR-TB treatment. This synthesis contributes to the ongoing discourse, providing valuable insights for healthcare practitioners, policymakers, and researchers working toward optimizing outcomes for individuals afflicted with MDR-TB.
Collapse
Affiliation(s)
- Ashwin Karnan
- Respiratory Medicine, Jawaharlal Nehru Medical College, Wardha, IND
| | - Ulhas Jadhav
- Respiratory Medicine, Jawaharlal Nehru Medical College, Wardha, IND
| | - Babaji Ghewade
- Respiratory Medicine, Jawaharlal Nehru Medical College, Wardha, IND
| | - Anjana Ledwani
- Respiratory Medicine, Jawaharlal Nehru Medical College, Wardha, IND
| | | |
Collapse
|
6
|
Li H, Fu Y, Song F, Xu X. Recent Updates on the Antimicrobial Compounds from Marine-Derived Penicillium fungi. Chem Biodivers 2023; 20:e202301278. [PMID: 37877324 DOI: 10.1002/cbdv.202301278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
In this review, 72 compounds isolated from marine-derived Penicillium fungi and their antimicrobial activities are reviewed from 2020 to 2023. According to their structures, these compounds can be divided into terpenoids, polyketides, alkaloids and other structural compounds, among which terpenoids and polyketides are relatively large in number. Some compounds have powerful inhibitory effects against different pathogenic bacteria and fungi. This review aims to provide more useful information and enlightenment for further efficient utilization of Penicillium spp. and their secondary metabolites.
Collapse
Affiliation(s)
- Honghua Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China, School of Light Industry, Beijing Technology and Business University, 100048, Beijing, P. R. China
| | - Yanqi Fu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China, School of Light Industry, Beijing Technology and Business University, 100048, Beijing, P. R. China
| | - Fuhang Song
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China, School of Light Industry, Beijing Technology and Business University, 100048, Beijing, P. R. China
| | - Xiuli Xu
- School of Ocean Sciences, China University of Geosciences, 100083, Beijing, P. R. China
| |
Collapse
|
7
|
Reuter A, Furin J. Treatment of Infection as a Core Strategy to Prevent Rifampicin-Resistant/Multidrug-Resistant Tuberculosis. Pathogens 2023; 12:pathogens12050728. [PMID: 37242398 DOI: 10.3390/pathogens12050728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
An estimated 19 million people are infected with rifampicin-resistant/multidrug-resistant strains of tuberculosis worldwide. There is little done to prevent these individuals from becoming sick with RR/MDR-TB, a disease that is associated with high rates of morbidity, mortality, and suffering. There are multiple phase III trials currently being conducted to assess the effectiveness of treatment of infection (i.e., "preventive therapy") for RR/MDR-TB, but their results are likely years away. In the meantime, there is sufficient evidence to support a more comprehensive management of people who have been exposed to RR/MDR-TB so that they can maintain their health. We present a patient scenario and share our experience in implementing a systematic post-exposure management program in South Africa with the goal of inspiring similar programs in other high-burden RR/MDR-TB settings.
Collapse
Affiliation(s)
- Anja Reuter
- The Sentinel Project on Pediatric Drug-Resistant Tuberculosis, Cape Town 7405, South Africa
| | - Jennifer Furin
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Brat K, Doubková M, Bratová M, Šťastná N, Wallenfels J, Peterová IČ. News in respiratory medicine. VNITRNI LEKARSTVI 2023; 69:329-334. [PMID: 37827832 DOI: 10.36290/vnl.2023.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Pneumology and phthisiology (respiratory medicine) has undergone dynamic development in the last two decades. The main focus of pulmonology in the past was care for patients with tuberculosis and pneumonia. Since then, respiratory medicine evolved and the current focus is on chronic pulmonary diseases, including chronic obstructive pulmonary disease, bronchial asthma, interstitial lung diseases, but also on acute lung conditions (e.g., pneumonia, pleural diseases, respiratory failure), pneumooncology or highly specialized care for rare lung diseases (e.g., cystic fibrosis, rare interstitial diseases). Bronchology, interventional pneumology and pulmonary function testing are also important components of respiratory medicine. The importance of respiratory medicine was apparent during the COVID-19 pandemic. In this article, we provide a brief overview of the most important news to the field of respiratory medicine in the year 2022, addressing the thematic areas of bronchology, cystic fibrosis, chronic obstructive pulmonary disease, asthma, interstitial lung diseases, pleural diseases, pneumooncology, tuberculosis and non-tuberculous mycobacteria.
Collapse
|
9
|
RpoB Gene Mutation Characteristics of Rifampicin-resistant Tuberculosis in Anqing, China. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm-127306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: Rifampicin resistant tuberculosis is a serious problem faced by tuberculosis control in China, and rapid detection of rifampicin resistance is urgently needed. Objectives: This study aimed to describe the molecular characteristics and frequency of RNA polymerase β subunit (rpoB) gene mutations in rifampicin-resistant tuberculosis (RR-TB) in the Anqing area. Methods: The rpoB gene fragment was amplified by polymerase chain reaction (PCR), and all isolates were sequenced for mutations in the rpoB gene. The mutations were obtained by comparing the sequencing results with the MUBII database. In addition, logistic regression was used to analyze the relationship between rpoB mutations and rifampicin (RIF) resistance. Results: There were 152 males and 42 females in this study, and the mean age was 56.60 ± 17.91 years. Mutations in the rpoB gene were a risk factor for rifampicin resistance (β = 5.271, P < 0.001 OR = 195.192). Among the 19 RR-TB strains, 16 (84.21%) had mutations in the ropB gene, and three (1.71%) of 175 rifampicin-sensitive strains were mutated. The mutation sites of five strains (31.58%) were at the codon 526 and five strains (31.58%) at the codon 531. However, there were two strains at the codon 513 and two strains at the codon 533 (15.79%), and two strains (10.53%) were double mutations. Conclusions: The mutation characteristics of the rpoB gene in the Anqing area are complex, and rpoB mutation detection can be used as an indicator to screen drug resistance of RIF.
Collapse
|
10
|
Hu Z, Fan XY. Editorial: Novel approaches to rapid diagnosis and treatment monitoring of active tuberculosis, vol II. Front Microbiol 2022; 13:1044314. [PMID: 36274713 PMCID: PMC9585348 DOI: 10.3389/fmicb.2022.1044314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
|
11
|
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), continues to pose a major public health problem and is the leading cause of mortality in people infected with human immunodeficiency virus (HIV). HIV infection greatly increases the risk of developing TB even before CD4+ T-cell counts decrease. Co-infection provides reciprocal advantages to both pathogens and leads to acceleration of both diseases. In HIV-coinfected persons, the diagnosis and treatment of tuberculosis are particularly challenging. Intensifying integration of HIV and tuberculosis control programmes has an impact on reducing diagnostic delays, increasing early case detection, providing prompt treatment onset, and ultimately reducing transmission. In this Review, we describe our current understanding of how these two pathogens interact with each other, new sensitive rapid assays for TB, several new prevention methods, new drugs and regimens.
Collapse
Affiliation(s)
- Qiaoli Yang
- Department of Infectious Diseases, Changzhi Medical College, Changzhi, Shanxi Province, China
| | - Jinjin Han
- Department of Infectious Diseases, Changzhi Medical College, Changzhi, Shanxi Province, China
| | - Jingjing Shen
- Department of Infectious Diseases, Changzhi people’s Hospital, Changzhi, Shanxi Province, China
| | - Xinsen Peng
- Department of Cardiology, Changzhi Medical College, Changzhi, Shanxi Province, China
| | - Lurong Zhou
- Department of Infectious Diseases, Changzhi Medical College, Changzhi, Shanxi Province, China
- *Correspondence: Lurong Zhou, Vice President, Chief Physician, Professor, Department of Infectious Diseases, Changzhi People’s Hospital, No.502 Changzhi Middle Road, Changzhi 046000, Shanxi Province, China. (e-mail: )
| | - Xuejing Yin
- Department of Neurology, Changzhi Medical College, Changzhi, Shanxi Province, China
| |
Collapse
|
12
|
Editorial: Coronavirus disease 2019 (COVID-19) - advances in epidemiology, diagnostics, treatments, host-directed therapies, pathogenesis, vaccines, and ongoing challenges. Curr Opin Pulm Med 2022; 28:163-165. [PMID: 35551155 DOI: 10.1097/mcp.0000000000000872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|