1
|
Canchi Sistla H, Talluri S, Rajagopal T, Venkatabalasubramanian S, Rao Dunna N. Genomic instability in ovarian cancer: Through the lens of single nucleotide polymorphisms. Clin Chim Acta 2024; 565:119992. [PMID: 39395774 DOI: 10.1016/j.cca.2024.119992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Ovarian cancer (OC) is the deadliest gynecological malignancy among all female reproductive cancers. It is characterized by high mortality rate and poor prognosis. Genomic instability caused by mutations, single nucleotide polymorphisms (SNPs), copy number variations (CNVs), microsatellite instability (MSI), and chromosomal instability (CIN) are associated with OC predisposition. SNPs, which are highly prevalent in the general population, show a greater relative risk contribution, particularly in sporadic cancers. Understanding OC etiology in terms of genetic basis can increase the use of molecular diagnostics and provide promising approaches for designing novel treatment modalities. This will help deliver personalized medicine to OC patients, which may soon be within reach. Given the pivotal impact of SNPs in cancers, the primary emphasis of this review is to shed light on their prevalence in key caretaker genes that closely monitor genomic integrity, viz., DNA damage response, repair, cell cycle checkpoints, telomerase maintenance, and apoptosis and their clinical implications in OC. We highlight the current challenges faced in different SNP-based studies. Various computational methods and bioinformatic tools employed to predict the functional impact of SNPs have also been comprehensively reviewed concerning OC research. Overall, this review identifies that variants in the DDR and HRR pathways are the most studied, implying their critical role in the disease. Conversely, variants in other pathways, such as NHEJ, MMR, cell cycle, apoptosis, telomere maintenance, and PARP genes, have been explored the least.
Collapse
Affiliation(s)
- Harshavardhani Canchi Sistla
- Cancer Genomics Laboratory, Department of Biotechnology, School of Chemical and Biotechnology, SASTRA- Deemed University, Thanjavur 613 401, India
| | - Srikanth Talluri
- Dana Farber Cancer Institute, Boston, MA 02215, USA; Veterans Administration Boston Healthcare System, West Roxbury, MA 02132, USA
| | | | - Sivaramakrishna Venkatabalasubramanian
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur Campus, Chennai 603 203, India
| | - Nageswara Rao Dunna
- Cancer Genomics Laboratory, Department of Biotechnology, School of Chemical and Biotechnology, SASTRA- Deemed University, Thanjavur 613 401, India.
| |
Collapse
|
2
|
Du ZH, Xia Y, Yang Q, Gao S. The BRCA2 p.N372 H i.a.1342A>C Could Regulate the Sensitivity of Ovarian Cancer Cells to Platinum-Based Drugs. Technol Cancer Res Treat 2020; 19:1533033820983289. [PMID: 33357097 PMCID: PMC7768310 DOI: 10.1177/1533033820983289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND AND OBJECTIVE We have previously reported that BRCA2 N372 H i.a.1342A>C heterozygous variation presented in platinum-resistant patients. This study aimed to further investigate the mechanism of BRCA2 N372 H mutation in the development of platinum resistance in ovarian cancer. METHODS The BRCA2 N372 H i.a.1342A>C was synthesized and used to exchange 1 wildtype allele followed by sequencing to confirm the mutant allele sequence. Plasmids were constructed and transfected into the OVCAR-3 cells after lentiviral packaging. BRCA2 N372 H mRNA was detected by qPCR. BRCA2 protein was assessed by immunoblotting. Binding of the BRCA2 to Rad51 was detected by immunofluorescence staining. Sensitivity of the cells to cisplatin treatment was assessed with CCK-8 assay. RESULTS It was found that expression of BRCA2 protein in ovarian cancer cells transfected with BRCA2 N372 H i.a.1342A>C gene (2.177 ± 0.003) was significantly increased compared to that of the cells transfected with lenti-EGFP only (1.227 ± 0.003, P < 0.001). Binding of the BRCA2 and Rad51 proteins was significantly increased in the cells with BRCA2 N372 H i.a.1342A>C mutation (3.542 ± 0.24) than that in the cells transfected with lenti-EGFP (1.29 ± 0.32) or empty cells (1.363 ± 0.32, P < 0.001). Cell viability significantly increased in the cells transfected with BRCA2 N372 H mutant gene. The IC50 value was significantly higher in the cells transfected with BRCA2 N372 H mutant gene (1.963 ± 0.04) than that of the cells transfected with lenti-EGFP (0.955 ± 0.03, P < 0.01) or empty cells (1.043 ± 0.007, P < 0.01). CONCLUSION Over expression of mRNA and protein of BRCA2 was detected in the cells with BRCA2 N372 H i.a.1342A>C mutation but not in the lentivirus negative control (lenti-EGFP) or the cells without transfection (empty cells), which may lead to resistance to platinum-based drugs in ovarian cancer cells through homologous recombination repair pathway.
Collapse
Affiliation(s)
- Zhen-Hua Du
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Xia
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Liao Y, Tu C, Song X, Cai L. Case report: Analysis of BRCA1 and BRCA2 gene mutations in a hereditary ovarian cancer family. J Assist Reprod Genet 2020; 37:1489-1495. [PMID: 32356124 PMCID: PMC7311593 DOI: 10.1007/s10815-020-01783-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Breast cancer susceptibility gene 1/2 (BRCA1/2) is the most important susceptibility gene associated with hereditary ovarian cancer (HOC). We aimed to screen BRAC1 and BRAC2 gene mutations in a member of a hereditary ovarian cancer family in China, and to analyze the structure and function of the mutant protein. METHODS A typical HOC family was selected. Blood samples and pathological tissue samples were taken from the female members of the family. Blood samples from two patients with sporadic ovaries of the same pathological type were taken as a control group. After RNA extraction, PCR amplification was applied and the PCR products were directly sequenced and aligned, prediction and analysis of protein structure and molecular conformation that may be caused by BRCA1/2 mutation. RESULTS The whole gene analysis of BRCA1 and BRCA2 in ovarian cancer patients in the family showed that there were 8 mutations in BRCA1 whole gene sequencing, including 3 nonsense mutations (2314C>T, 2543T>C, 4540T>C); two mutations have been recorded, which are associated with cervical cancer (2844C>T) and endometriosis (3345A>G); three newly discovered mutations (3780A>G, 5069A>G, 3326A>T). Among them, 3780A>G and 5069A>G caused amino acid changes, while 3326A>T mutation caused Arg mutation to stop codon. A total of 7 mutations were detected in BRCA2 whole-genome sequencing, including 5 non-significant mutations (3623A>G, 4034T>C, 4790A>G, 6740G>C, 7469A>G); one no-record mutation (1716T>A), and 1 recorded mutation (1342A>C), which was associated with breast cancer and ovarian cancer. BRCA1 (3326A>T) and BRCA2 (1342A>C) mutations were co-existing in patients (II1, II3, and II5) identified as serous adenocarcinoma grade II. Two cases of ovarian serous cystadenocarcinoma with no history of family tumors were normalized for BRCA1/2 gene sequencing. In the gene detection of III generation female, four females with BRCA2 (1342A>C) mutation were found, and one of them also carried the BRCA1 (3326A>T) mutation, who can be considered a high-risk group of HOC in this family. Online protein structure predictions revealed that BRCA1 (3326A>T) mutations mutated AGA at this site to TGA resulting in a translated Arg (arginine) mutation as a stop codon, while BRCA2 (1342A>C) mutated AAT at this site to CAT resulting in a translated Asn mutation to His. CONCLUSION The BRCA1 (3326A>T) and BRCA2 (1342A>C) were detected in the HOC family, which may be the susceptibility gene of the family's HOC. The BRCA1/2 gene screening may be possible to obtain high-risk populations in this family.
Collapse
Affiliation(s)
- Ying Liao
- Department of Gynecology, Xinyu People's Hospital, Xinyu, 338000, Jiangxi, China
| | - Chunhua Tu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zhengjie, Nanchang, 330000, Jiangxi, China
| | - Xiaoxia Song
- Department of Gynecology, Xinyu People's Hospital, Xinyu, 338000, Jiangxi, China
| | - Liping Cai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zhengjie, Nanchang, 330000, Jiangxi, China.
| |
Collapse
|
4
|
Du Z, Bi F, Wang L, Yang Q. Next-generation sequencing unravels extensive genetic alteration in recurrent ovarian cancer and unique genetic changes in drug-resistant recurrent ovarian cancer. Mol Genet Genomic Med 2018; 6:638-647. [PMID: 29797793 PMCID: PMC6081217 DOI: 10.1002/mgg3.414] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/21/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND By using a high-throughput sequencing technique, we sought to delineate genetic alterations in recurrent ovarian cancer patients and further compare genetic changes in drug-resistant and -sensitive recurrent ovarian cancer patients. We also sought to study the specificity, sensitivity, and consistency of DNA biomarkers in liquid biopsy specimens and ovarian cancer tissue DNA. METHODS Tumor tissue specimens and blood samples were obtained from pathologically proven recurrent ovarian cancer patients. Genomic DNA was extracted from tumor tissues, blood cells, ascites, and urine samples. The DNA Library was constructed and sequencing was performed using the Illumina HiSeq 4000 high-throughput sequencing platform. Bioinformatic analysis was done using the Torrent Suite software. RESULTS Ten patients with pathologically proven drug-resistant recurrent ovarian cancer and 11 patients with sensitive recurrent ovarian cancer were included. The 5-year OS for drug-resistant recurrent ovarian cancer patients (44 ± 11.07 months, 95% CI: 231.24-53.66 months) was significantly lower than that of drug-sensitive recurrent ovarian cancer patients (58 ± 3.97 months; 95% CI: 50.05-65.59 months; p = 0.024) TP53 was the most frequently mutated gene in both drug-resistant (9/10, 90%) and drug-sensitive recurrent ovarian cancers (10/11, 91%). MYC and RB1 had the highest frequency of copy number variations (6/21, 29%) in recurrent ovarian cancers, followed by PIK3CA (3/21, 14%). BRCA2 N372H polymorphism was found in 40% (4/10) of drug-resistant recurrent ovarian cancer patients. The specificity, sensitivity, and consistency of TP53 and BRCA1 in circulating tumor-free DNA and tumor tissue DNA were 100%, 73.7%, 76.2% and 100%, 75%, 95.24%, respectively. CONCLUSION We uncovered extensive genetic alterations in recurrent ovarian cancer and drug-resistant recurrent ovarian cancer exhibited unique genetic changes compared with recurrent ovarian cancer and drug-sensitive recurrent ovarian cancer. We further showed that high-throughput sequencing using liquid biopsy specimens could provide an effective, specific, and sensitive approach for detecting genetic alterations in ovarian cancer.
Collapse
Affiliation(s)
- Zhen‐Hua Du
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Fang‐Fang Bi
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Lei Wang
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Qing Yang
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
5
|
Silvestre RT, Delmonico L, Bravo M, Santiago F, Scherrer LR, Moreira ADS, Tabalipa M, Otero U, Ornellas MHF, Alves G. Health survey and assessment of the polymorphisms BRCA1/P871L, BRCA1/Q356R, and BRCA2/N372H in female gas station workers in Rio de Janeiro. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:730-734. [PMID: 28862356 DOI: 10.1002/em.22120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/12/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
Gas station workers are exposed to chemicals known to be carcinogenic, especially benzene. The objective was to analyze the health problems of female gas station workers by means of sociodemographic and clinical questionnaires, and laboratorial exams. We performed the genotyping of the polymorphisms BRCA1/P871L and BRCA1/Q356R by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism, and of variant allele BRCA2/N372H through direct sequencing. The female workers showed a higher concentration of monocytes (P = 0.039); a greater number of spontaneous abortions (P = 0.025, OR = 4.977, 95% CI = 1.135-30.669); higher tobacco consumption (P = 0.013); and higher alcohol consumption (P = 0.05). The statistical analysis of the polymorphisms associated with the variables monocyte concentration and miscarriage number did not reveal a significant relationship, and smoking and spontaneous abortion were not statistically associated either. Environ. Mol. Mutagen. 58:730-734, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rafaele T Silvestre
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, 20550-170, Brazil
- Graduate Program in Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Lucas Delmonico
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, 20550-170, Brazil
- Graduate Program in Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Maryah Bravo
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, 20550-170, Brazil
| | - Fábio Santiago
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, 20550-170, Brazil
- Graduate Program in Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | | | - Marianne Tabalipa
- Technical Unit of Occupational Exposure, Environmental and Cancer, Prevention and Surveillance Coordination, National Cancer Institute, Rio de Janeiro, Brazil
| | - Ubirani Otero
- Technical Unit of Occupational Exposure, Environmental and Cancer, Prevention and Surveillance Coordination, National Cancer Institute, Rio de Janeiro, Brazil
| | - Maria Helena F Ornellas
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, 20550-170, Brazil
- Graduate Program in Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Gilda Alves
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, 20550-170, Brazil
- Graduate Program in Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Spectrum of genetic variants of BRCA1 and BRCA2 in a German single center study. Arch Gynecol Obstet 2017; 295:1227-1238. [PMID: 28324225 DOI: 10.1007/s00404-017-4330-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/10/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Determination of mutation status of BRCA1 and BRCA2 has become part of the clinical routine. However, the spectrum of genetic variants differs between populations. The aim of this study was to deliver a comprehensive description of all detected variants. METHODS In families fulfilling one of the German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC) criteria for genetic testing, one affected was chosen for analysis. DNA of blood lymphocytes was amplified by PCR and prescreened by DHPLC. Aberrant fragments were sequenced. All coding exons and splice sites of BRCA1 and BRCA2 were analyzed. Screening for large rearrangements in both genes was performed by MLPA. RESULTS Of 523 index patients, 121 (23.1%) were found to carry a pathogenic or likely pathogenic (class 4/5) mutation. A variant of unknown significance (VUS) was detected in 73/523 patients (13.9%). Two mutations p.Gln1756Profs*74 and p.Cys61Gly comprised 42.3% (n = 33/78) of all detected pathogenic mutations in BRCA1. Most of the other mutations were unique mutations. The most frequently detected mutation in BRCA2 was p.Val1283Lys (13.9%; n = 6/43). Altogether, 101 different neutral genetic variants were counted in BRCA1 (n = 35) and in BRCA2 (n = 66). CONCLUSION The two most frequently detected mutations are founder mutations in Poland and Czech Republic. More similarities seem to be shared with our direct neighbor countries compared to other European countries. For comparison of the extended genotype, a shared database is needed.
Collapse
|