1
|
Wu S, Li C, Li Y, Liu J, Rong C, Pei H, Li X, Zeng X, Mao W. SLC2A9 rs16890979 reduces uric acid absorption by kidney organoids. Front Cell Dev Biol 2024; 11:1268226. [PMID: 38269090 PMCID: PMC10806012 DOI: 10.3389/fcell.2023.1268226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction: The excretion and absorption of uric acid (UA) by the kidneys helps regulate serum UA levels. GLUT9, encoded by SLC2A9, is mainly expressed in the renal tubules responsible for UA absorption. SLC2A9 polymorphisms are associated with different serum UA levels. However, the lack of proper in vitro models has stalled research on the mechanisms of single nucleotide polymorphisms (SNPs) that affect UA metabolism in human urate transporters. Methods: In this study, we constructed a gene-edited human embryonic stem cells-9 (ESC-H9) derived kidney organoid bearing rs16890979, an SLC2A9 missense mutation with undetermined associations with hyperuricemia or hypouricemia. Kidney organoids derived from ESC-H9 with genetical overexpression (OE) and low expression (shRNA) of SLC2A9 to serve as controls to study the function of SLC2A9. The function of rs16890979 on UA metabolism was evaluated after placing the organoids to urate-containing medium and following histopathological analysis. Results: The kidney organoids with heterozygous or homozygous rs16890979 mutations showed normal SLC2A9 expression levels and histological distribution, phenotypically similar to the wild-type controls. However, reduced absorption of UA by the kidney organoids with rs16890979 mutants was observed. This finding together with the observation that UA absorption is increased in organoids with SLC2A9 overexpression and decreased in those with SLC2A9 knockdown, suggest that GLUT9 is responsible for UA absorption, and the rs16890979 SNP may compromise this functionality. Moreover, epithelial-mesenchymal transition (EMT) was detected in organoids after UA treatment, especially in the kidney organoid carrying GLUT9OE, suggesting the cytobiological mechanism explaining the pathological features in hyperuricosuria-related renal injury. Discussion: This study showing the transitional value of kidney organoid modeling the function of SNPs on UA metabolism. With a defined genetic background and a confirmed UA absorption function should be useful for studies on renal histological, cellular, and molecular mechanisms with this organoid model.
Collapse
Affiliation(s)
- Shouhai Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chuang Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
| | - Yizhen Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junyi Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cuiping Rong
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongfei Pei
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiong Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Zeng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lab of Stem Cell Biology and Innovative Research of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine/Guangdong Academy of Chinese Medicine, Guangzhou, China
- National Institute for Stem Cell Clinical Research, Guangdong Provincial Hospital of Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Mao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Park JW, Noh JH, Kim JM, Lee HY, Kim KA, Park JY. Gene Dose-Dependent and Additive Effects of ABCG2 rs2231142 and SLC2A9 rs3733591 Genetic Polymorphisms on Serum Uric Acid Levels. Metabolites 2022; 12:metabo12121192. [PMID: 36557230 PMCID: PMC9781553 DOI: 10.3390/metabo12121192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
This study aimed to evaluate whether the single nucleotide polymorphisms of ATP-binding cassette subfamily G member 2 (ABCG2) and solute carrier family 2 member 9 (SLC2A9) affect individual blood uric acid levels using pyrosequencing. ABCG2 (rs2231142, rs72552713, rs2231137), SLC2A9 (rs3734553, rs3733591, rs16890979), and individual uric acid levels were prospectively analyzed in 250 healthy young Korean male participants. Prominent differences in uric acid levels of the alleles were observed in the SLC2A9 rs3733591 polymorphism: wild-type (AA) vs. heterozygote (AG), 0.7 mg/dL (p < 0.0001); AA vs. mutant type (GG), 1.32 mg/dL (p < 0.0001); and AG vs. GG, 0.62 mg/dL (p < 0.01). In ABCG2 single nucleotide polymorphisms (SNPs), the statistically significant differences in uric acid levels were only found in rs2231142 between CC vs. AA (1.06 mg/dL; p < 0.001), and CC vs. CA (0.59 mg/dL; p < 0.01). Serum uric acid levels based on the ABCG2 and SLC2A9 diplotype groups were also compared. The uric acid levels were the lowest in the CC/AA diplotype and highest in the AA/AG diplotype. In addition, the SNP SLC2A9 rs3733591 tended to increase the uric acid levels when the ABCG2 rs2231142 haplotypes were fixed. In conclusion, both the ABCG2 rs2231142 and SLC2A9 rs3733591 polymorphisms may additively elevate blood uric acid levels.
Collapse
Affiliation(s)
- Jin-Woo Park
- Department of Clinical Pharmacology and Toxicology, Korea University Anam Hospital, Korea University Medicine, Seoul 02841, Republic of Korea
- Department of Neurology, Korea University Anam Hospital, Korea University Medicine, Seoul 02841, Republic of Korea
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Ji-Hyeon Noh
- Department of Clinical Pharmacology and Toxicology, Korea University Anam Hospital, Korea University Medicine, Seoul 02841, Republic of Korea
| | - Jong-Min Kim
- Department of Clinical Pharmacology and Toxicology, Korea University Anam Hospital, Korea University Medicine, Seoul 02841, Republic of Korea
| | - Hwa-Young Lee
- Department of Clinical Pharmacology and Toxicology, Korea University Anam Hospital, Korea University Medicine, Seoul 02841, Republic of Korea
| | - Kyoung-Ah Kim
- Department of Clinical Pharmacology and Toxicology, Korea University Anam Hospital, Korea University Medicine, Seoul 02841, Republic of Korea
| | - Ji-Young Park
- Department of Clinical Pharmacology and Toxicology, Korea University Anam Hospital, Korea University Medicine, Seoul 02841, Republic of Korea
- Correspondence: ; Tel.: +82-2-920-6288
| |
Collapse
|
3
|
Yoon J, Cachau R, David VA, Thompson M, Jung W, Jee SH, Daar IO, Winkler CA, Cho SK. Characterization of a Compound Heterozygous SLC2A9 Mutation That Causes Hypouricemia. Biomedicines 2021; 9:1172. [PMID: 34572357 PMCID: PMC8471325 DOI: 10.3390/biomedicines9091172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 11/17/2022] Open
Abstract
Renal hypouricemia is a rare genetic disorder. Hypouricemia can present as renal stones or exercise-induced acute renal failure, but most cases are asymptomatic. Our previous study showed that two recessive variants of SLC22A12 (p.Trp258*, pArg90His) were identified in 90% of the hypouricemia patients from two independent cohorts: the Korean genome and epidemiology study (KoGES) and the Korean Cancer Prevention Study (KCPS-II). In this work, we investigate the genetic causes of hypouricemia in the rest of the 10% of unsolved cases. We found a novel non-synonymous mutation of SLC2A9 (voltage-sensitive uric acid transporter) in the whole-exome sequencing (WES) results. Molecular dynamics prediction suggests that the novel mutation p.Met126Val in SLCA9b (p.Met155Val in SLC2A9a) hinders uric acid transport through a defect of the outward open geometry. Molecular analysis using Xenopus oocytes confirmed that the p.Met126Val mutation significantly reduced uric acid transport but does not affect the SLC2A9 protein expression level. Our results will shed light on a better understanding of SLC2A9-mediated uric acid transport and the development of a uric acid-lowering agent.
Collapse
Affiliation(s)
- Jaeho Yoon
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA; (J.Y.); (I.O.D.)
| | - Raul Cachau
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA;
| | - Victor A. David
- Molecular Genetic Epidemiology Section, Basic Research Laboratory, National Cancer Institute, Frederick, MD 21701, USA; (V.A.D.); (C.A.W.)
| | - Mary Thompson
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA;
| | - Wooram Jung
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Sun-Ha Jee
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Ira O. Daar
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA; (J.Y.); (I.O.D.)
| | - Cheryl A. Winkler
- Molecular Genetic Epidemiology Section, Basic Research Laboratory, National Cancer Institute, Frederick, MD 21701, USA; (V.A.D.); (C.A.W.)
| | - Sung-Kweon Cho
- Molecular Genetic Epidemiology Section, Basic Research Laboratory, National Cancer Institute, Frederick, MD 21701, USA; (V.A.D.); (C.A.W.)
- Department of Pharmacology, Ajou University School of Medicine, 164, Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea
| |
Collapse
|
4
|
Lukkunaprasit T, Rattanasiri S, Turongkaravee S, Suvannang N, Ingsathit A, Attia J, Thakkinstian A. The association between genetic polymorphisms in ABCG2 and SLC2A9 and urate: an updated systematic review and meta-analysis. BMC MEDICAL GENETICS 2020; 21:210. [PMID: 33087043 PMCID: PMC7580000 DOI: 10.1186/s12881-020-01147-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/13/2020] [Indexed: 02/08/2023]
Abstract
Background Replication studies showed conflicting effects of ABCG2 and SLC2A9 polymorphisms on gout and serum urate. This meta-analysis therefore aimed to pool their effects across studies. Methods Studies were located from MEDLINE and Scopus from inception to 17th June 2018. Observational studies in adults with any polymorphism in ABCG2 or SLC2A9, and outcome including gout, hyperuricemia, and serum urate were included for pooling. Data extractions were performed by two independent reviewers. Genotype effects were pooled stratified by ethnicity using a mixed-effect logistic model and a multivariate meta-analysis for dichotomous and continuous outcomes. Results Fifty-two studies were included in the analysis. For ABCG2 polymorphisms, mainly studied in Asians, carrying 1–2 minor-allele-genotypes of rs2231142 and rs72552713 were respectively about 2.1–4.5 and 2.5–3.9 times higher odds of gout than non-minor-allele-genotypes. The two rs2231142-risk-genotypes also had higher serum urate about 11–18 μmol/l. Conversely, carrying 1–2 minor alleles of rs2231137 was about 36–57% significantly lower odds of gout. For SLC2A9 polymorphisms, mainly studied in Caucasians, carrying 1–2 minor alleles of rs1014290, rs6449213, rs6855911, and rs7442295 were about 25–43%, 31–62%, 33–64%, and 35–65% significantly lower odds of gout than non-minor-allele-genotypes. In addition, 1–2 minor-allele-genotypes of the latter three polymorphisms had significantly lower serum urate about 20–49, 21–51, and 18–54 μmol/l than non-minor-allele-genotypes. Conclusions Our findings should be useful in identifying patients at risk for gout and high serum urate and these polymorphisms may be useful in personalized risk scores. Trial registration PROSPERO registration number: CRD42018105275. Supplementary information The online version contains supplementary material available at 10.1186/s12881-020-01147-2.
Collapse
Affiliation(s)
- Thitiya Lukkunaprasit
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Rd., Ratchathewi, Bangkok, 10400, Thailand.,Department of Pharmacology, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Sasivimol Rattanasiri
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Rd., Ratchathewi, Bangkok, 10400, Thailand.
| | - Saowalak Turongkaravee
- Social and Administrative Pharmacy Excellence Research (SAPER) Unit, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Naravut Suvannang
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Rd., Ratchathewi, Bangkok, 10400, Thailand
| | - Atiporn Ingsathit
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Rd., Ratchathewi, Bangkok, 10400, Thailand
| | - John Attia
- Centre for Clincial Epidemiology and Biostatistics, School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Ammarin Thakkinstian
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Rd., Ratchathewi, Bangkok, 10400, Thailand
| |
Collapse
|
5
|
Pavelcova K, Bohata J, Pavlikova M, Bubenikova E, Pavelka K, Stiburkova B. Evaluation of the Influence of Genetic Variants of SLC2A9 (GLUT9) and SLC22A12 (URAT1) on the Development of Hyperuricemia and Gout. J Clin Med 2020; 9:jcm9082510. [PMID: 32759716 PMCID: PMC7465009 DOI: 10.3390/jcm9082510] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/23/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023] Open
Abstract
Urate transporters, which are located in the kidneys, significantly affect the level of uric acid in the body. We looked at genetic variants of genes encoding the major reabsorption proteins GLUT9 (SLC2A9) and URAT1 (SLC22A12) and their association with hyperuricemia and gout. In a cohort of 250 individuals with primary hyperuricemia and gout, we used direct sequencing to examine the SLC22A12 and SLC2A9 genes. Identified variants were evaluated in relation to clinical data, biochemical parameters, metabolic syndrome criteria, and our previous analysis of the major secretory urate transporter ABCG2. We detected seven nonsynonymous variants of SLC2A9. There were no nonsynonymous variants of SLC22A12. Eleven variants of SLC2A9 and two variants of SLC22A12 were significantly more common in our cohort than in the European population (p = 0), while variants p.V282I and c.1002+78A>G had a low frequency in our cohort (p = 0). Since the association between variants and the level of uric acid was not demonstrated, the influence of variants on the development of hyperuricemia and gout should be evaluated with caution. However, consistent with the findings of other studies, our data suggest that p.V282I and c.1002+78A>G (SLC2A9) reduce the risk of gout, while p.N82N (SLC22A12) increases the risk.
Collapse
Affiliation(s)
- Katerina Pavelcova
- Department of Molecular Biology and Immunogenetics, Institute of Rheumatology, 128 50 Prague, Czech Republic; (K.P.); (J.B.); (E.B.); (K.P.)
- Department of Rheumatology, First Faculty of Medicine, Charles University, 128 50 Prague, Czech Republic
| | - Jana Bohata
- Department of Molecular Biology and Immunogenetics, Institute of Rheumatology, 128 50 Prague, Czech Republic; (K.P.); (J.B.); (E.B.); (K.P.)
- Department of Rheumatology, First Faculty of Medicine, Charles University, 128 50 Prague, Czech Republic
| | - Marketa Pavlikova
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, 186 75 Prague, Czech Republic;
| | - Eliska Bubenikova
- Department of Molecular Biology and Immunogenetics, Institute of Rheumatology, 128 50 Prague, Czech Republic; (K.P.); (J.B.); (E.B.); (K.P.)
- Department of Rheumatology, First Faculty of Medicine, Charles University, 128 50 Prague, Czech Republic
| | - Karel Pavelka
- Department of Molecular Biology and Immunogenetics, Institute of Rheumatology, 128 50 Prague, Czech Republic; (K.P.); (J.B.); (E.B.); (K.P.)
| | - Blanka Stiburkova
- Department of Molecular Biology and Immunogenetics, Institute of Rheumatology, 128 50 Prague, Czech Republic; (K.P.); (J.B.); (E.B.); (K.P.)
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, 120 00 Prague, Czech Republic
- Correspondence: ; Tel.: +420-234-075-319
| |
Collapse
|
6
|
Khaliq OP, Konoshita T, Moodely J, Ramsuran V, Naicker T. Gene polymorphisms of uric acid are associated with pre-eclampsia in South Africans of African ancestry. Hypertens Pregnancy 2020; 39:103-116. [PMID: 32255363 DOI: 10.1080/10641955.2020.1741608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objectives: To investigate the association of uric acid gene polymorphisms and Pre-eclampsia.Methods: 637 women of African ancestry [280 controls, 357 pre-eclampsia (early-onset = 187, late-onset = 170]) retrospectively. The rs505802, rs1212986, and rs1014290 SNPs were genotyped from purified DNA using real-time PCR.Results: CT genotype (rs505802) was higher in pre-eclampsia [Adjusted p = 0.028*: OR (95% CI) = 1.73 (1.258-2.442)] and late-onset pre-eclampsia [Adjusted p = 0.027*: OR (95% CI) = 1.75 (1.165-2.2628)] than controls. CT genotype (rs1014290) was higher in early-onset pre-eclampsia [Adjusted p-value = 0.040*: OR (95% CI) = 1.60 (1.102-2.325)] than controls.Conclusion: The genotyped rs505802 and rs1014290 are significantly associated with pre-eclampsia.
Collapse
Affiliation(s)
- Olive P Khaliq
- Optics and Imaging Centre, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Tadashi Konoshita
- Third Department of Internal Medicine, University of Fukui Faculty of Medicine Sciences, Fukui, Japan
| | - Jagidesa Moodely
- Department of Obstetrics and Gynecology and Women's Health and HIV Research Group, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Veron Ramsuran
- KwaZulu-Natal Research Innovation and Sequencing Platform, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
7
|
Lee HA, Park BH, Park EA, Cho SJ, Kim HS, Park H. Long-term effects of the SLC2A9 G844A and SLC22A12 C246T variants on serum uric acid concentrations in children. BMC Pediatr 2018; 18:296. [PMID: 30189835 PMCID: PMC6127956 DOI: 10.1186/s12887-018-1272-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 08/30/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND We evaluated the effects of two single-nucleotide polymorphisms on UA concentrations in the first decade of life using repeated-measures data. METHODS We included all subjects who were followed-up at least once and for whom we had both UA and genotypic data (i.e., 375, 204, 307, and 363 patients aged 3, 5, 7, and 9 years, respectively). All participated in the Ewha Birth and Growth Cohort study. We used a mixed model analysis to estimate the longitudinal association of serum UA concentration due to the rs3825017 (SLC22A12 c. 246C > T) and rs16890979 (SLC2A9 c. 844G > A) genotypes. RESULTS Overall, the tracking coefficient of UA concentrations in children 3 to 9 years of age was 0.31, and was higher in boys than in girls (0.34 vs. 0.29, respectively). Regarding individual variance, serum UA concentrations decreased as age increased (β = - 0.07, p < 0.05), but there were no significant differences by sex. The effects of rs3825017 on UA concentration were significant in boys, but not in girls. Boys with the T allele of rs3825017 had higher concentrations than their counterparts regardless of the time of follow-up. The rs16890979 genotypes were not significantly associated with serum UA concentration in either sex. CONCLUSION This study showed that rs3825017 in the SLC22A12 gene was associated with UA concentration in childhood.
Collapse
Affiliation(s)
- Hye Ah Lee
- Department of Preventive Medicine, College of Medicine, Ewha Womans University, 1071, Anyangcheon-ro, Yangcheon-ku, Seoul, 158-710, Korea.,Clinical Trial Center, Mokdong Hospital, Ewha Womans University, Seoul, Korea
| | - Bo Hyun Park
- Department of Preventive Medicine, College of Medicine, Ewha Womans University, 1071, Anyangcheon-ro, Yangcheon-ku, Seoul, 158-710, Korea
| | - Eun Ae Park
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Su Jin Cho
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Hae Soon Kim
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Hyesook Park
- Department of Preventive Medicine, College of Medicine, Ewha Womans University, 1071, Anyangcheon-ro, Yangcheon-ku, Seoul, 158-710, Korea.
| |
Collapse
|
8
|
Nkeck JR, Singwé Ngandeu M, Ama Moor V, Nkeck JP, Chedjou JP, Ndoadoumgue AL, Mbacham WF. Genetic analysis for rs2280205 (A>G) and rs2276961 (T>C) in SLC2A9 polymorphism for the susceptibility of gout in Cameroonians: a pilot study. BMC Res Notes 2018; 11:230. [PMID: 29615104 PMCID: PMC5883404 DOI: 10.1186/s13104-018-3333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/27/2018] [Indexed: 11/22/2022] Open
Abstract
Objective To determine the association of non-synonymous variants rs2280205 and rs2276961 of the SLC2A9 gene to gout in Cameroonians. Results In a case–control study including 30 patients with acute gout matched to 30 healthy volunteers. We searched for polymorphism of the targeted variants using Restriction Fragment Length Polymorphism following polymerize chain reaction. Fisher exact test and Student t-test were used to compare variables, with a threshold of significance set at 0.05. The mean age of participants was 58 ± 8 years with 28 (93%) males. The family history of gout was found in one-third of the cases (p > 0.05). Uricemia was higher in cases than controls (p < 0.001) but 24 h urate excretion was similar in both groups (p > 0.05). Ancestral alleles (G and C) and their homozygous genotypes (GG and CC) of the targeted variants were predominant in both groups (p < 0.001). The polymorphisms of targeted variants were not associated with gout, and do not influence uric acid concentration in blood and urine. Non-synonymous variants rs2280205 and rs2276961 are not associated with gout in Cameroonians. However, the hereditary component of the disease suggests the influence of other genetic and/or environmental factors. Electronic supplementary material The online version of this article (10.1186/s13104-018-3333-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jan René Nkeck
- Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon.
| | - Madeleine Singwé Ngandeu
- Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon.,Rheumatology Unit of the Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Vicky Ama Moor
- Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon.,Biochemistry Laboratory of the Yaoundé University Hospital Centre, Yaoundé, Cameroon
| | - Jériel Pascal Nkeck
- Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
| | - Jean-Pierre Chedjou
- Laboratory of Public Health Biotechnology, Biotechnology Centre of the University of Yaoundé I, Yaoundé, Cameroon
| | | | - Wilfred F Mbacham
- Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon.,Laboratory of Public Health Biotechnology, Biotechnology Centre of the University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
9
|
Lee YH, Seo YH, Kim JH, Choi SJ, Ji JD, Song GG. Associations between SLC2A9 polymorphisms and gout susceptibility : A meta-analysis. Z Rheumatol 2017; 76:64-70. [PMID: 27052299 DOI: 10.1007/s00393-016-0070-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to determine whether polymorphisms in solute carrier family 2 and facilitated glucose transporter member 9 (SLC2A9) are associated with susceptibility to gout. METHODS A meta-analysis was conducted on associations between the rs12510549, rs16890979, and rs1014290 polymorphisms of SLC2A9 and gout susceptibility using fixed and random effects models. RESULTS Eleven comparative studies comprising 1,472 patients and 3,269 controls from Caucasian and Asian populations were included in this meta-analysis. The meta-analysis identified a significant negative association between gout and allele 2 (minor) of the rs12510549 polymorphism in the overall population (OR = 0.641, 95 % CI = 0.540-0.761, P = 4.1 × 10-7). Stratification by ethnicity identified a significant negative association between this polymorphism and gout in Caucasians (OR = 0.647, 95 % CI = 0.542-0.771, P = 1.2 × 10-6) but not in Asians (OR = 0.515, 95 % CI = 0.214-1.236, P = 0.137). The meta-analysis showed a significant negative association between gout and allele 2 of the rs16890979 polymorphism in all study subjects (OR = 0.229, 95 % CI = 0.084-0.628, P = 0.004). Stratification by ethnicity identified a significant negative association between this polymorphism and gout in Caucasians (OR = 0.469, 95 % CI = 0.317-0.695, P = 1.6 × 10-6) and in Asians (OR = 0.192, 95 % CI = 0.072-0.513, P = 0.001). A significant negative association was found between allele 2 of the rs1014290 polymorphism and gout susceptibility in Asians (OR = 0.597, 95 % CI = 0.478-0.746, P = 5.4 × 10-6) but not in Caucasians (OR = 0.778, 95 % CI = 0.595-1.043, P = 0.095). CONCLUSIONS This meta-analysis shows that the rs12510549, rs16890979, and rs1014290 polymorphisms of SLC2A9 protect against the development of gout in Caucasians and/or Asians.
Collapse
Affiliation(s)
- Y H Lee
- Division of Rheumatology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, 02841, Seoul, Korea.
| | - Y H Seo
- Division of Rheumatology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, 02841, Seoul, Korea
| | - J-H Kim
- Division of Rheumatology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, 02841, Seoul, Korea
| | - S J Choi
- Division of Rheumatology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, 02841, Seoul, Korea
| | - J D Ji
- Division of Rheumatology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, 02841, Seoul, Korea
| | - G G Song
- Division of Rheumatology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, 02841, Seoul, Korea
| |
Collapse
|
10
|
Association between SLC2A9 (GLUT9) gene polymorphisms and gout susceptibility: an updated meta-analysis. Rheumatol Int 2016; 36:1157-65. [DOI: 10.1007/s00296-016-3503-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
|