1
|
Velmurugan S, Pauline R, Chandrashekar G, Kulanthaivel L, Subbaraj GK. Understanding the Impact of the Sirtuin 1 (SIRT1) Gene on Age-related Macular Degeneration: A Comprehensive Study. Niger Postgrad Med J 2024; 31:93-101. [PMID: 38826012 DOI: 10.4103/npmj.npmj_9_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/02/2024] [Indexed: 06/04/2024]
Abstract
Age-related macular degeneration (AMD) is a prevalent and incurable condition affecting the central retina and posing a significant risk to vision, particularly in individuals over the age of 60. As the global population ages, the prevalence of AMD is expected to rise, leading to substantial socioeconomic impacts and increased healthcare costs. The disease manifests primarily in two forms, neovascular and non-neovascular, with genetic, environmental and lifestyle factors playing a pivotal role in disease susceptibility and progression. This review article involved conducting an extensive search across various databases, including Google Scholar, PubMed, Web of Science, ScienceDirect, Scopus and EMBASE, to compile relevant case-control studies and literature reviews from online published articles extracted using search terms related to the work. SIRT1, a key member of the sirtuin family, influences cellular processes such as ageing, metabolism, DNA repair and stress response. Its dysregulation is linked to retinal ageing and ocular conditions like AMD. This review discusses the role of SIRT1 in AMD pathology, its association with genetic variants and its potential as a biomarker, paving the way for targeted interventions and personalised treatment strategies. In addition, it highlights the findings of case-control studies investigating the relationship between SIRT1 gene polymorphisms and AMD risk. These studies collectively revealed a significant association between certain SIRT1 gene variants and AMD risk. Further studies with larger sample sizes are required to validate these findings. As the prevalence of AMD grows, understanding the role of SIRT1 and other biomarkers becomes increasingly vital for improving diagnosis, treatment and, ultimately, patient outcomes.
Collapse
Affiliation(s)
- Saranya Velmurugan
- Medical Genetics Division, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Rashmi Pauline
- Medical Genetics Division, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | | | - Langeswaran Kulanthaivel
- Department of Biomedical Sciences, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | - Gowtham Kumar Subbaraj
- Medical Genetics Division, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| |
Collapse
|
2
|
Kaikaryte K, Gedvilaite G, Vilkeviciute A, Kriauciuniene L, Mockute R, Cebatoriene D, Zemaitiene R, Balciuniene VJ, Liutkeviciene R. SIRT1: Genetic Variants and Serum Levels in Age-Related Macular Degeneration. Life (Basel) 2022; 12:life12050753. [PMID: 35629418 PMCID: PMC9148058 DOI: 10.3390/life12050753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/30/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The aim of this paper was to determine the frequency of SIRT1 rs3818292, rs3758391, rs7895833 single nucleotide polymorphism genotypes and SIRT1 serum levels associated with age-related macular degeneration (AMD) in the Lithuanian population. Methods: Genotyping of SIRT1 rs3818292, rs3758391 and rs7895833 was performed using RT-PCR. SIRT1 serum level was determined using the ELISA method. Results: We found that rs3818292 and rs7895833 were associated with an increased risk of developing exudative AMD. Additional sex-differentiated analysis revealed only rs7895833 was associated with an increased risk of developing exudative AMD in women after strict Bonferroni correction. The analysis also revealed that individuals carrying rs3818292, rs3758391 and rs7895833 haplotype G-T-G are associated with increased odds of exudative AMD. Still, the rare haplotypes were associated with the decreased odds of exudative AMD. After performing an analysis of serum SIRT1 levels and SIRT1 genetic variant, we found that carriers of the SIRT1 rs3818292 minor allele G had higher serum SIRT1 levels than the AA genotype. In addition, individuals carrying at least one SIRT1 rs3758391 T allele also had elevated serum SIRT1 levels compared with individuals with the wild-type CC genotype. Conclusions: Our study showed that the SIRT1 polymorphisms rs3818292 and rs7895833 and rs3818292-rs3758391-rs7895833 haplotype G-T-G could be associated with the development of exudative AMD. Also, two SNPs (rs3818292 and rs3758391) are associated with elevated SIRT1 levels.
Collapse
Affiliation(s)
- Kriste Kaikaryte
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (G.G.); (A.V.); (L.K.); (R.L.)
- Correspondence: ; Tel.: +370-6857-5999
| | - Greta Gedvilaite
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (G.G.); (A.V.); (L.K.); (R.L.)
| | - Alvita Vilkeviciute
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (G.G.); (A.V.); (L.K.); (R.L.)
| | - Loresa Kriauciuniene
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (G.G.); (A.V.); (L.K.); (R.L.)
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| | - Ruta Mockute
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| | - Dzastina Cebatoriene
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| | - Reda Zemaitiene
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| | - Vilma Jurate Balciuniene
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| | - Rasa Liutkeviciene
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (G.G.); (A.V.); (L.K.); (R.L.)
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| |
Collapse
|
3
|
Zhou J, He YW, Fu L, Lan YY, Liu XY, Wu Q, Xu WD, Huang AF. Gene polymorphisms of SIRT1 in patients with rheumatoid arthritis. Int J Rheum Dis 2021; 25:210-217. [PMID: 34866331 DOI: 10.1111/1756-185x.14257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/13/2021] [Accepted: 11/25/2021] [Indexed: 11/26/2022]
Abstract
AIM Previous studies have shown that silent information regulator 1 (SIRT1) expression is elevated in rheumatoid arthritis (RA) patients. However, whether gene polymorphisms in SIRT1 gene associated with RA in a Chinese Han population remains to be discussed. METHOD In this case-control study, 529 RA patients and 700 healthy controls were selected, and association of 11 SIRT1 gene polymorphisms (rs12415800, rs3740051, rs932658, rs3740053, rs7895833, rs10509291, rs33957861, rs7069102, rs2273773, rs3818292, rs1467568) with RA susceptibility was evaluated. RESULTS Frequency of GA+GG genotype of rs3740051 in RA patients was significantly lower than that in healthy controls (P = .037). Frequencies of GC and GC+GG genotypes of rs7069102 were significantly lower than those in healthy controls (P = .036, P = .047). Frequencies of GA and GA+GG genotypes of rs1467568 were lower in RA patients as compared to those in healthy controls (P = .011, P = .013). For rs2273773, RA patients who carried the T allele had higher number of tender joints than patients who carried the C allele (P = .033). Other polymorphisms did not associate with RA risk. CONCLUSION The findings suggest that rs3740051, rs7069102 and rs1467568 variants in SIRT1 gene are related to RA susceptibility in a Chinese Han population.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - Yan-Wei He
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lu Fu
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - You-Yu Lan
- Department of Rheumatology and Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao-Yan Liu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - Qian Wu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Kuo S, Chio C, Yeh C, Ma J, Liu W, Lin M, Lin K, Chang C. Mesenchymal stem cell-conditioned medium attenuates the retinal pathology in amyloid-β-induced rat model of Alzheimer's disease: Underlying mechanisms. Aging Cell 2021; 20:e13340. [PMID: 33783931 PMCID: PMC8135003 DOI: 10.1111/acel.13340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/08/2020] [Accepted: 02/14/2021] [Indexed: 12/11/2022] Open
Abstract
Amyloid‐beta (Aβ) oligomer is known to contribute to the pathophysiology of age‐related macular degeneration. Herein, we aimed to elucidate the in vivo and in vitro effects of Aβ1‐42 application on retinal morphology in rats. Our in vivo studies revealed that intracerebroventricular administration of Aβ1‐42 oligomer caused dysmorphological changes in both retinal ganglion cells and retinal pigment epithelium. In addition, in vitro studies revealed that ARPE‐19 cells following Aβ1‐42 oligomer application had decreased viability along with apoptosis and decreased expression of the tight junction proteins, increased expression of both phosphor‐AKT and phosphor‐GSK3β and decreased expression of both SIRT1 and β‐catenin. Application of conditioned medium (CM) obtained from mesenchymal stem cells (MSC) protected against Aβ1‐42 oligomer‐induced retinal pathology in both rats and ARPE‐19 cells. In order to explore the potential role of peptides secreted from the MSCs, we applied mass spectrometry to compare the peptidomics profiles of the MSC‐CM. Gene ontology enrichment analysis and String analysis were performed to explore the differentially expressed peptides by predicting the functions of their precursor proteins. Bioinformatics analysis showed that 3‐8 out of 155–163 proteins in the MSC‐CM maybe associated with SIRT1/pAKT/pGSK3β/β‐catenin, tight junction proteins, and apoptosis pathway. In particular, the secretomes information on the MSC‐CM may be helpful for the prevention and treatment of retinal pathology in age‐related macular degeneration.
Collapse
Affiliation(s)
- Shu‐Chun Kuo
- Department of Ophthalmology Chi Mei Medical Center Tainan Taiwan
- Department of Optometry Chung Hwa University of Medical Technology Tainan Taiwan
| | - Chung‐Ching Chio
- Division of Neurosurgery Department of Surgery Chi Mei Medical Center Tainan Taiwan
| | - Chao‐Hung Yeh
- Department of Optometry Chung Hwa University of Medical Technology Tainan Taiwan
- Division of Neurosurgery Department of Surgery Chi Mei Medical Center Tainan Taiwan
| | - Jui‐Ti Ma
- Department of Medical Research Chi Mei Medical Center Tainan Taiwan
| | - Wen‐Pin Liu
- Department of Medical Research Chi Mei Medical Center Tainan Taiwan
| | - Mao‐Tsun Lin
- Department of Medical Research Chi Mei Medical Center Tainan Taiwan
| | - Kao‐Chang Lin
- Department of Holistic Care Chi Mei Medical Center Tainan Taiwan
- Department of Neurology Chi Mei Medical Center Tainan Taiwan
| | - Ching‐Ping Chang
- Department of Medical Research Chi Mei Medical Center Tainan Taiwan
| |
Collapse
|
5
|
Park S, Shin J, Bae J, Han D, Park SR, Shin J, Lee SK, Park HW. SIRT1 Alleviates LPS-Induced IL-1β Production by Suppressing NLRP3 Inflammasome Activation and ROS Production in Trophoblasts. Cells 2020; 9:cells9030728. [PMID: 32188057 PMCID: PMC7140679 DOI: 10.3390/cells9030728] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Emerging evidence indicates that aberrant maternal inflammation is associated with several pregnancy-related disorders such as preeclampsia, preterm birth, and intrauterine growth restriction. Sirtuin1 (SIRT1), a class III histone deacetylase, is involved in the regulation of various physiopathological processes including cellular inflammation and metabolism. However, the effect of SIRT1 on the placental proinflammatory environment remains to be elucidated. In this study, we investigated the effect of SIRT1 on lipopolysaccharide (LPS)-induced NLRP3 inflammasome activation and its underlying mechanisms in human first-trimester trophoblasts (Sw.71 and HTR-8/SVneo cells). Treatment with LPS elevated SIRT1 expression and induced NLRP3 inflammasome activation in mouse placental tissues and human trophoblasts. Knockdown of SIRT1 enhanced LPS-induced NLRP3 inflammasome activation, inflammatory signaling, and subsequent interleukin (IL)-1β secretion. Furthermore, knockdown of NLRP3 considerably attenuated the increase of IL-1β secretion in SIRT1-knockdown cells treated with LPS. Moreover, SIRT1 inhibited LPS-induced NLRP3 inflammasome activation by reducing oxidative stress. This study revealed a novel mechanism via which SIRT1 exerts anti-inflammatory effects, suggesting that SIRT1 is a potential therapeutic target for the prevention of inflammation-associated pregnancy-related complications.
Collapse
Affiliation(s)
- Sumi Park
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Korea; (S.P.); (J.S.); (J.B.); (D.H.); (J.S.)
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon 35365, Korea;
| | - Jiha Shin
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Korea; (S.P.); (J.S.); (J.B.); (D.H.); (J.S.)
| | - Jeongyun Bae
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Korea; (S.P.); (J.S.); (J.B.); (D.H.); (J.S.)
| | - Daewon Han
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Korea; (S.P.); (J.S.); (J.B.); (D.H.); (J.S.)
| | - Seok-Rae Park
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon 35365, Korea;
- Department of Microbiology, Konyang University College of Medicine, Daejeon 35365, Korea
| | - Jongdae Shin
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Korea; (S.P.); (J.S.); (J.B.); (D.H.); (J.S.)
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon 35365, Korea;
| | - Sung Ki Lee
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon 35365, Korea;
- Department of Obstetrics and Gynecology, Konyang University Hospital, Daejeon 35365, Korea
- Correspondence: (S.K.L.); (H.-W.P.); Tel.: +82-42-600-8677 (H.-W.P.)
| | - Hwan-Woo Park
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Korea; (S.P.); (J.S.); (J.B.); (D.H.); (J.S.)
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon 35365, Korea;
- Correspondence: (S.K.L.); (H.-W.P.); Tel.: +82-42-600-8677 (H.-W.P.)
| |
Collapse
|
6
|
Zhang Y, Anoopkumar-Dukie S, Arora D, Davey AK. Review of the anti-inflammatory effect of SIRT1 and SIRT2 modulators on neurodegenerative diseases. Eur J Pharmacol 2020; 867:172847. [DOI: 10.1016/j.ejphar.2019.172847] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022]
|
7
|
Liutkeviciene R, Vilkeviciute A, Kriauciuniene L, Deltuva VP. SIRT1 rs12778366, FGFR2 rs2981582, STAT3 rs744166, LIPC rs10468017, rs493258 and LPL rs12678919 genotypes and haplotype evaluation in patients with age-related macular degeneration. Gene 2019; 686:8-15. [DOI: 10.1016/j.gene.2018.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 10/11/2018] [Accepted: 11/01/2018] [Indexed: 02/08/2023]
|
8
|
Sun M, Du M, Zhang W, Xiong S, Gong X, Lei P, Zha J, Zhu H, Li H, Huang D, Gu X. Survival and Clinicopathological Significance of SIRT1 Expression in Cancers: A Meta-Analysis. Front Endocrinol (Lausanne) 2019; 10:121. [PMID: 30930849 PMCID: PMC6424908 DOI: 10.3389/fendo.2019.00121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/11/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Silent information regulator 2 homolog 1 (SIRT1) is an evolutionarily conserved enzymes with nicotinamide adenine dinucleotide (NAD)+-dependent deacetylase activity. SIRT1 is involved in a large variety of cellular processes, such as genomic stability, energy metabolism, senescence, gene transcription, and oxidative stress. SIRT1 has long been recognized as both a tumor promoter and tumor suppressor. Its prognostic role in cancers remains controversial. Methods: A meta-analysis of 13,138 subjects in 63 articles from PubMed, EMBASE, and Cochrane Library was performed to evaluate survival and clinicopathological significance of SIRT1 expression in various cancers. Results: The pooled results of meta-analysis showed that elevated expression of SIRT1 implies a poor overall survival (OS) of cancer patients [Hazard Ratio (HR) = 1.566, 95% CI: 1.293-1.895, P < 0.0001], disease free survival (DFS) (HR = 1.631, 95% CI: 1.250-2.130, P = 0.0003), event free survival (EFS) (HR = 2.534, 95% CI: 1.602-4.009, P = 0.0001), and progress-free survival (PFS) (HR = 3.325 95% CI: 2.762-4.003, P < 0.0001). Elevated SIRT1 level was associated with tumor stage [Relative Risk (RR) = 1.299, 95% CI: 1.114-1.514, P = 0.0008], lymph node metastasis (RR = 1.172, 95% CI: 1.010-1.360, P = 0.0363), and distant metastasis (RR = 1.562, 95% CI: 1.022-2.387, P = 0.0392). Meta-regression and subgroup analysis revealed that ethnic background has influence on the role of SIRT1 expression in predicting survival and clinicopathological characteristics of cancers. Overexpression of SIRT1 predicted a worse OS and higher TNM stage and lymphatic metastasis in Asian population especially in China. Conclusion: Our data suggested that elevated expression of SIRT1 predicted a poor OS, DFS, EFS, PFS, but not for recurrence-free survival (RFS) and cancer-specific survival (CCS). SIRT1 overexpression was associated with higher tumor stage, lymph node metastasis, and distant metastasis. SIRT1-mediated molecular events and biological processes could be an underlying mechanism for metastasis and SIRT1 is a therapeutic target for inhibiting metastasis, leading to good prognosis.
Collapse
Affiliation(s)
- Min Sun
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Mengyu Du
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Wenhua Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Hubei University of Medicine, Shiyan, China
| | - Sisi Xiong
- School of Nursing, Hubei University of Medicine, Shiyan, China
| | - Xingrui Gong
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Peijie Lei
- The First Clinical School, Hubei University of Medicine, Shiyan, China
| | - Jin Zha
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hongrui Zhu
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Heng Li
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Dong Huang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Dong Huang
| | - Xinsheng Gu
- Department of Pharmacology, College of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Xinsheng Gu
| |
Collapse
|
9
|
Zhou M, Luo J, Zhang H. Role of Sirtuin 1 in the pathogenesis of ocular disease (Review). Int J Mol Med 2018; 42:13-20. [PMID: 29693113 DOI: 10.3892/ijmm.2018.3623] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/29/2018] [Indexed: 11/06/2022] Open
Abstract
Sirtuin (SIRT)1, a member of the SIRT family, is a highly conserved NAD+‑dependent histone deacetylase, which has a regulatory role in numerous physiological and pathological processes by removing acetyl groups from various proteins. SIRT1 controls the activity of numerous transcription factors and cofactors, which impacts the downstream gene expression, and eventually alleviates oxidative stress and associated damage. Numerous studies have revealed that dysfunction of SIRT1 is linked with ocular diseases, including cataract, age‑associated macular degeneration, diabetic retinopathy and glaucoma, while ectopic upregulation of SIRT1 protects against various ocular diseases. In the present review, the significant role of SIRT1 and the potential therapeutic value of modulating SIRT1 expression in ocular development and eye diseases is summarized.
Collapse
Affiliation(s)
- Mengwen Zhou
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jing Luo
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Huiming Zhang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
10
|
Yan WM, Chen T, Wang XC, Qi LS, Zhao GH, Yang GQ, Ma YF, Tao Y, Zhang L, Zhang ZM. The reason for the amelioration of N-methyl-N-nitrosourea-induced retinitis pigmentosa in rats by hydrogen-rich saline. Int J Ophthalmol 2017; 10:1495-1503. [PMID: 29062766 DOI: 10.18240/ijo.2017.10.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022] Open
Abstract
AIM To investigate the effects of hydrogen-rich saline (HRS) on microglia activation and Sirtuin type 1 (Sirt1) in rats with N-methyl-N-nitrosourea (MNU)-induced retinitis pigmentosa (RP). METHODS Rats were divided into norm (N) group, model (M) group and HRS (H) group. Rats in M and H groups were given saline and HRS respectively prior to and after administration of MNU. At one day (d1) and d3 afterwards, electroretinogram and histological examination were performed to confirm the effects of HRS on retinal function and structure of MNU-induced RP. Immunofluorescence staining of anti-ionized calcium-binding adapter molecule 1 (Iba1), a maker of microglia cells, was performed, with quantitative real-time polymerase chain reaction (qRT-PCR) for its mRNA quantification. Moreover, Sirt1 mRNA and protein expression in the retinas were detected by Western blot and qRT-PCR. RESULTS HRS preserved the retinal function and mitigated the reduction of photoreceptor degeneration in MNU-treated retinas. The presence of microglia cells was somewhat more obvious in H group than that in M group at d1. HRS suppressed the further activation of microglia cells, with the number of microglia cells less than that of M group at d3. Results of qRT-PCR of Iba1 were consistent with those of immunofluorescence staining, with the mRNA expression of Iba1 in H group more intensive than that of M group at d1 (P<0.05), while less than that of M group at d3 (P<0.05). Furthermore, the Sirt1 mRNA and protein expression decreased after MNU administration, while HRS mitigated the MNU-induced downregulation of Sirt1. CONCLUSION HRS can effectively keep microglia activation induced by MNU to an appropriate extent, while upregulate Sirt1 in MNU-induced RP.
Collapse
Affiliation(s)
- Wei-Ming Yan
- Department of Clinical Medicine, Faculty of Aerospace Medicine, Key Laboratory of Aerospace Medicine of the National Education Ministry, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Tao Chen
- Department of Clinical Medicine, Faculty of Aerospace Medicine, Key Laboratory of Aerospace Medicine of the National Education Ministry, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China.,Department of Health Service, Faculty of Aerospace, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Xiao-Cheng Wang
- Department of Clinical Medicine, Faculty of Aerospace Medicine, Key Laboratory of Aerospace Medicine of the National Education Ministry, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Lin-Song Qi
- Department of Aviation Physical Examination and Ophthalmology, Air Force General Hospital, Beijing 10010, China
| | - Guan-Hua Zhao
- Department of Clinical Medicine, Faculty of Aerospace Medicine, Key Laboratory of Aerospace Medicine of the National Education Ministry, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Guo-Qing Yang
- Department of Clinical Medicine, Faculty of Aerospace Medicine, Key Laboratory of Aerospace Medicine of the National Education Ministry, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yi-Fei Ma
- Department of Clinical Medicine, Faculty of Aerospace Medicine, Key Laboratory of Aerospace Medicine of the National Education Ministry, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Ye Tao
- Department of Ophthalmology, General Hospital of Chinese PLA, Ophthalmology &Visual Science Key Lab of PLA, Beijing 100853, China
| | - Lei Zhang
- Department of Clinical Medicine, Faculty of Aerospace Medicine, Key Laboratory of Aerospace Medicine of the National Education Ministry, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Zuo-Ming Zhang
- Department of Clinical Medicine, Faculty of Aerospace Medicine, Key Laboratory of Aerospace Medicine of the National Education Ministry, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
11
|
Miller JW, Bagheri S, Vavvas DG. Advances in Age-related Macular Degeneration Understanding and Therapy. ACTA ACUST UNITED AC 2017; 10:119-130. [PMID: 29142592 PMCID: PMC5683729 DOI: 10.17925/usor.2017.10.02.119] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While the development of anti-vascular endothelial growth factor (anti-VEGF) as a therapy for neovascular age-related macular degeneration (AMD) was a great success, the pathologic processes underlying dry AMD that eventually leads to photoreceptor dysfunction, death, and vision loss remain elusive to date, with a lack of effective therapies and increasing prevalence of the disease. There is an overwhelming need to improve the classification system of AMD, to increase our understanding of cell death mechanisms involved in both neovascular and non-neovascular AMD, and to develop better biomarkers and clinical endpoints to eventually be able to identify better therapeutic targets—especially early in the disease process. There is no doubt that it is a matter of time before progress will be made and better therapies will be developed for non-neovascular AMD.
Collapse
Affiliation(s)
- Joan W Miller
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, US
| | - Saghar Bagheri
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, US
| | - Demetrios G Vavvas
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, US
| |
Collapse
|