1
|
Liang C, Wang W, Yang G, Xu Z, Li J, Wu K, Shen X. Utility of interim apparent diffusion coefficient value in predicting treatment response among patients with locally advanced cervical cancer treated with radiotherapy. Clin Transl Radiat Oncol 2024; 48:100827. [PMID: 39192879 PMCID: PMC11347826 DOI: 10.1016/j.ctro.2024.100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/29/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
Background For locally advanced cervical cancer (LACC), treatment response to radiotherapy (RT) can vary significantly even among those with the same stage classification of International Federation of Gynecology and Obstetrics (FIGO). This study investigated the value of ADC metric for forecasting end-of-treatment outcomes in LACC patients referred for RT. Methods Eighty patients with pathologically confirmed cervical squamous cell carcinoma with (SCC) were included in the research. Abdominal or pelvic MRI scans were conducted at least three times for all participants: before RT, three weeks after beginning of RT and approximately two months after RT was finalized. Calculated apparent diffusion coefficient (ADC) values of the LACC include: pre-ADC, interim-ADC, ΔADC and Δ%ADC. Based on Response Evaluation Criteria in Solid Tumors (RECIST) 1.1, subjects were calculated and subsequently categorized into good responders group (complete response) and poor responders group (progressive disease, stable disease or partial response). Results Compared to good-responders, subjects of poor-responder group showed significantly lower values of interim-ADC, ΔADC, and Δ%ADC (all P < 0.05). To distinguish between good and poor responders, the optimal cutoff values of interim-ADC, ΔADC, and Δ%ADC were determined to be 1.067 × 10-3 mm2/sec, 0.209 × 10-3 mm2/sec, and 30.74 % using the ROC curve, with corresponding sensitivities of 83.78 %, 86.49 %, 75.68 %, and specificities of 88.37 %, 86.49 %, 75.68 %, respectively. Multivariate logistic regression revealed that the baseline tumor diameter and interim-ADC were significant prognostic factors for treatment response with an odds ratio (OR) of 0.105 (95 % confidence interval [95 % CI] 0.018-0.616) for baseline tumor diameter and 42.896 (95 % CI 8.205-224.262) for interim-ADC. Conclusion The interim-ADC value and baseline tumor diameter surfaced as possible indicative factors for predicting the response to RT in patients with LACC.
Collapse
Affiliation(s)
- Chunyu Liang
- Department of Medical Imaging, Radiology Center, The University of Hong Kong-Shenzhen Hospital, 518000 Shenzhen, Guangdong, China
| | - Wei Wang
- Department of Medical Imaging, Radiology Center, The University of Hong Kong-Shenzhen Hospital, 518000 Shenzhen, Guangdong, China
| | - Guohui Yang
- Department of Medical Imaging, Radiology Center, The University of Hong Kong-Shenzhen Hospital, 518000 Shenzhen, Guangdong, China
| | - Zhiyuan Xu
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, 518000 Shenzhen, Guangdong, China
| | - Jian Li
- Department of Medical Imaging, Radiology Center, The University of Hong Kong-Shenzhen Hospital, 518000 Shenzhen, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, 515041 Shantou, Guangdong, China
| | - Xinping Shen
- Department of Medical Imaging, Radiology Center, The University of Hong Kong-Shenzhen Hospital, 518000 Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Li Y, Liu Q, Wu W, Liu Z, Zhang Y, Dou Y, Bu Q, Zhang S. Intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) combined with conventional MRI for the detection of skull-base invasion in nasopharyngeal carcinoma: comparison with 18F-sodium fluoride ( 18F-NaF) positron emission tomography/computed tomography (PET/CT). Quant Imaging Med Surg 2024; 14:6908-6921. [PMID: 39281160 PMCID: PMC11400646 DOI: 10.21037/qims-24-745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/11/2024] [Indexed: 09/18/2024]
Abstract
Background The extent of skull base invasion (SBI) in nasopharyngeal carcinoma (NPC) directly impacts tumor staging, treatment strategies, and prognosis assessment for NPC patients, emphasizing the critical need for prompt diagnosis and precise assessment of invasion. Thus, we aimed to integrate the advantages of intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) and conventional magnetic resonance imaging (cMRI), and assess their combined diagnostic efficacy versus that of 18F-sodium fluoride (18F-NaF) positron emission tomography/computed tomography (PET/CT) for detecting SBI in NPC patients. Methods The study prospectively and randomly recruited 62 patients newly diagnosed with NPC by pathological biopsy at the Cancer Center of Affiliated Hospital of Guangdong Medical University from January 2021 to September 2022. All patients underwent baseline cMRI, IVIM-DWI, and PET/CT scans. The IVIM-DWI analysis included 3 primary parameters: true diffusion coefficient (D), pseudodiffusion coefficient (D*), and pseudodiffusion fraction (f). SBI was defined as the involvement of any substructure confirmed by follow-up MRI and clinical symptoms. Inter-observer agreement was evaluated utilizing the intraclass correlation coefficients (ICC) and kappa coefficients. Receiver operating characteristic (ROC) curve was used to evaluate the diagnostic performance of cMRI, IVIM-DWI plus cMRI, and PET/CT. DeLong test was used to compare the areas under the curve (AUC) of the 3 modalities. Results Excellent inter-observer reliability was observed (range, 0.841-0.946). Among the IVIM-DWI parameters, D* + f demonstrated comparable accuracy to D + D* + f (AUC 0.906 vs. 0.904; sensitivity 88.9% vs. 89.8%; specificity 92.3% vs. 91.0%). IVIM-DWI plus cMRI yielded an overall AUC of 0.947, sensitivity of 92.6%, and specificity of 96.8%, surpassing cMRI alone with an AUC of 0.914 (P=0.025), sensitivity of 91.2%, and specificity of 91.7%, as well as 18F-NaF PET/CT with an AUC of 0.852 (P<0.001), sensitivity of 80.1%, and specificity of 90.4%. In detecting substructures of SBI, IVIM-DWI plus cMRI showed superior performance compared to 18F-NaF PET/CT within the petrous part of the temporal bone (AUC 0.968 vs. 0.871, P=0.011; sensitivity 93.5% vs. 87.1%, specificity 100% vs. 87.1%), pterygopalatine fossa (AUC 0.935 vs. 0.831, P=0.032; sensitivity 93.9% vs. 69.7%, specificity 93.1% vs. 96.6%), and foramen ovale (AUC 0.885 vs. 0.710, P=0.019; sensitivity 76.9% vs. 61.5%, specificity 100% vs. 80.6%). Conclusions IVIM-DWI plus cMRI can accurately detect SBI and the substructures in NPC, providing a valuable reference for personalized treatment strategies and precise prognosis assessment.
Collapse
Affiliation(s)
- Yuange Li
- Department of Radiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qin Liu
- Department of Radiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Weiquan Wu
- Clinical Research Experiment Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Zelin Liu
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yueling Zhang
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yiteng Dou
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qiujin Bu
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Mesny E, Leporq B, Chapet O, Beuf O. Intravoxel incoherent motion magnetic resonance imaging to assess early tumor response to radiation therapy: Review and future directions. Magn Reson Imaging 2024; 108:129-137. [PMID: 38354843 DOI: 10.1016/j.mri.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Early prediction of radiation response by imaging is a dynamic field of research and it can be obtained using a variety of noninvasive magnetic resonance imaging methods. Recently, intravoxel incoherent motion (IVIM) has gained interest in cancer imaging. IVIM carries both diffusion and perfusion information, making it a promising tool to assess tumor response. Here, we briefly introduced the basics of IVIM, reviewed existing studies of IVIM in various type of tumors during radiotherapy in order to show whether IVIM is a useful technique for an early assessment of radiation response. 31/40 studies reported an increase of IVIM parameters during radiotherapy compared to baseline. In 27 studies, this increase was higher in patients with good response to radiotherapy. Future directions including implementation of IVIM on MR-Linac and its limitation are discussed. Obtaining new radiologic biomarkers of radiotherapy response could open the way for a more personalized, biology-guided radiation therapy.
Collapse
Affiliation(s)
- Emmanuel Mesny
- Radiation Oncology Department, Center Hospitalier Lyon Sud, Pierre Benite, France; Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon F-69100, France.
| | - Benjamin Leporq
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon F-69100, France
| | - Olivier Chapet
- Radiation Oncology Department, Center Hospitalier Lyon Sud, Pierre Benite, France
| | - Olivier Beuf
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon F-69100, France
| |
Collapse
|
4
|
Liu W, Wang X, Xie S, Liu WV, Masokano IB, Bai Y, Chen J, Zhong L, Luo Y, Zhou G, Li W, Pei Y. Amide proton transfer (APT) and magnetization transfer (MT) in predicting short-term therapeutic outcome in nasopharyngeal carcinoma after chemoradiotherapy: a feasibility study of three-dimensional chemical exchange saturation transfer (CEST) MRI. Cancer Imaging 2023; 23:80. [PMID: 37658446 PMCID: PMC10474660 DOI: 10.1186/s40644-023-00602-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND The three-dimensional chemical exchange saturation transfer (3D CEST) technique is a novel and promising magnetic resonance sequence; however, its application in nasopharyngeal carcinoma (NPC) lacks sufficient evaluation. This study aimed to assess the feasibility of the 3D CEST technique in predicting the short-term treatment outcomes for chemoradiotherapy (CRT) in NPC patients. METHODS Forty NPC patients and fourteen healthy volunteers were enrolled and underwent the pre-treatment 3D CEST magnetic resonance imaging and diffusion-weighted imaging (DWI). The reliability of 3D CEST was assessed in healthy volunteers by calculating the intra- and inter-observer correlation coefficient (ICC) for amide proton transfer weighted-signal intensity (APTw-SI) and magnetization transfer ratio (MTR) values. NPC patients were divided into residual and non-residual groups based on short-term treatment outcomes after CRT. Whole-tumor regions of interest (ROIs) were manually drawn to measure APTw-SI, MTR and apparent diffusion coefficient (ADC) values. Multivariate analysis and the receiver operating characteristic curve (ROC) were used to evaluate the prediction performance of clinical characteristics, APTw-SI, MTR, ADC values, and combined models in predicting short-term treatment outcomes in NPC patients. RESULTS For the healthy volunteer group, all APTw-SI and MTR values exhibited good to excellent intra- and inter-observer agreements (0.736-0.910, 0.895-0.981, all P > 0.05). For NPC patients, MTR values showed a significant difference between the non-residual and residual groups (31.24 ± 5.21% vs. 34.74 ± 1.54%, P = 0.003) while no significant differences were observed for APTw-SI and ADC values (P > 0.05). Moreover, the diagnostic power of MTR value was superior to APTw-SI (AUC: 0.818 vs. 0.521, P = 0.017) and comparable to ADC values (AUC: 0.818 vs. 0.649, P > 0.05) in predicting short-term treatment outcomes for NPC patients. The prediction performance did not improve even when combining MTR values with APTw-SI and/or ADC values (P > 0.05). CONCLUSIONS The pre-treatment MTR value acquired through 3D CEST demonstrated superior predictive performance for short-term treatment outcomes compared to APTw-SI and ADC values in NPC patients after CRT.
Collapse
Affiliation(s)
- Wenguang Liu
- Department of Radiology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No.87 Xiangya Rd., Kai Fu District, Changsha, 410008, Hunan, China
| | - Xiao Wang
- Department of Radiology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No.87 Xiangya Rd., Kai Fu District, Changsha, 410008, Hunan, China
| | - Simin Xie
- Department of Radiology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No.87 Xiangya Rd., Kai Fu District, Changsha, 410008, Hunan, China
| | | | - Ismail Bilal Masokano
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yu Bai
- Department of Radiology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No.87 Xiangya Rd., Kai Fu District, Changsha, 410008, Hunan, China
| | - Juan Chen
- Department of Radiology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No.87 Xiangya Rd., Kai Fu District, Changsha, 410008, Hunan, China
| | - Linhui Zhong
- Department of Radiology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No.87 Xiangya Rd., Kai Fu District, Changsha, 410008, Hunan, China
| | - Yijing Luo
- Department of Radiology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No.87 Xiangya Rd., Kai Fu District, Changsha, 410008, Hunan, China
| | - Gaofeng Zhou
- Department of Radiology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No.87 Xiangya Rd., Kai Fu District, Changsha, 410008, Hunan, China
| | - Wenzheng Li
- Department of Radiology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No.87 Xiangya Rd., Kai Fu District, Changsha, 410008, Hunan, China.
| | - Yigang Pei
- Department of Radiology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No.87 Xiangya Rd., Kai Fu District, Changsha, 410008, Hunan, China.
| |
Collapse
|
5
|
Guo Y, Dai G, Xiong X, Wang X, Chen H, Zhou X, Huang W, Chen F. Intravoxel incoherent motion radiomics nomogram for predicting tumor treatment responses in nasopharyngeal carcinoma. Transl Oncol 2023; 31:101648. [PMID: 36905870 PMCID: PMC10020114 DOI: 10.1016/j.tranon.2023.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Intravoxel incoherent motion (IVIM) plays an important role in predicting treatment responses in patient with nasopharyngeal carcinoma (NPC). The goal of this study was to develop and validate a radiomics nomogram based on IVIM parametric maps and clinical data for the prediction of treatment responses in NPC patients. METHODS Eighty patients with biopsy-proven NPC were enrolled in this study. Sixty-two patients had complete responses and 18 patients had incomplete responses to treatment. Each patient received a multiple b-value diffusion-weighted imaging (DWI) examination before treatment. Radiomics features were extracted from IVIM parametric maps derived from DWI image. Feature selection was performed by the least absolute shrinkage and selection operator method. Radiomics signature was generated by support vector machine based on the selected features. Receiver operating characteristic (ROC) curves and area under the ROC curve (AUC) values were used to evaluate the diagnostic performance of radiomics signature. A radiomics nomogram was established by integrating the radiomics signature and clinical data. RESULTS The radiomics signature showed good prognostic performance to predict treatment response in both training (AUC = 0.906, P<0.001) and testing (AUC = 0.850, P<0.001) cohorts. The radiomic nomogram established by integrating the radiomic signature with clinical data significantly outperformed clinical data alone (C-index, 0.929 vs 0.724; P<0.0001). CONCLUSIONS The IVIM-based radiomics nomogram provided high prognostic ability to treatment responses in patients with NPC. The IVIM-based radiomics signature has the potential to be a new biomarker in prediction of the treatment responses and may affect treatment strategies in patients with NPC.
Collapse
Affiliation(s)
- Yihao Guo
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Ganmian Dai
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Xiaoli Xiong
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Xiaoyi Wang
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Huijuan Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Xiaoyue Zhou
- Siemens Healthineers Digital Technology (Shanghai) Co., Ltd., Shanghai 201306, China
| | - Weiyuan Huang
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China.
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China.
| |
Collapse
|
6
|
Romeo V, Stanzione A, Ugga L, Cuocolo R, Cocozza S, Quarantelli M, Chawla S, Farina D, Golay X, Parker G, Shukla-Dave A, Thoeny H, Vidiri A, Brunetti A, Surlan-Popovic K, Bisdas S. Clinical indications and acquisition protocol for the use of dynamic contrast-enhanced MRI in head and neck cancer squamous cell carcinoma: recommendations from an expert panel. Insights Imaging 2022; 13:198. [PMID: 36528678 PMCID: PMC9759606 DOI: 10.1186/s13244-022-01317-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/19/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The clinical role of perfusion-weighted MRI (PWI) in head and neck squamous cell carcinoma (HNSCC) remains to be defined. The aim of this study was to provide evidence-based recommendations for the use of PWI sequence in HNSCC with regard to clinical indications and acquisition parameters. METHODS Public databases were searched, and selected papers evaluated applying the Oxford criteria 2011. A questionnaire was prepared including statements on clinical indications of PWI as well as its acquisition technique and submitted to selected panelists who worked in anonymity using a modified Delphi approach. Each panelist was asked to rate each statement using a 7-point Likert scale (1 = strongly disagree, 7 = strongly agree). Statements with scores equal or inferior to 5 assigned by at least two panelists were revised and re-submitted for the subsequent Delphi round to reach a final consensus. RESULTS Two Delphi rounds were conducted. The final questionnaire consisted of 6 statements on clinical indications of PWI and 9 statements on the acquisition technique of PWI. Four of 19 (21%) statements obtained scores equal or inferior to 5 by two panelists, all dealing with clinical indications. The Delphi process was considered concluded as reasons entered by panelists for lower scores were mainly related to the lack of robust evidence, so that no further modifications were suggested. CONCLUSIONS Evidence-based recommendations on the use of PWI have been provided by an independent panel of experts worldwide, encouraging a standardized use of PWI across university and research centers to produce more robust evidence.
Collapse
Affiliation(s)
- Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Renato Cuocolo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
- Interdepartmental Research Center on Management and Innovation in Healthcare - CIRMIS, University of Naples Federico II, Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Mario Quarantelli
- Biostructure and Bioimaging Institute, National Research Council, Naples, Italy
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA, USA
| | - Davide Farina
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College Hospitals NHS Trust, London, UK
| | - Geoff Parker
- Department of Computer Science, Centre for Medical Image Computing, Queen Square Institute of Neurology, University College London, London, UK
| | - Amita Shukla-Dave
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Departments of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Harriet Thoeny
- Department of Radiology, Cantonal Hospital Fribourg, University of Fribourg, Fribourg, Switzerland
| | - Antonello Vidiri
- Department of Radiology and Diagnostic Imaging, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | | | - Sotirios Bisdas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK.
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College Hospitals NHS Trust, London, UK.
| |
Collapse
|
7
|
Qin Y, Chen C, Chen H, Gao F. The value of intravoxel incoherent motion model-based diffusion-weighted imaging for predicting long-term outcomes in nasopharyngeal carcinoma. Front Oncol 2022; 12:902819. [DOI: 10.3389/fonc.2022.902819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/03/2022] [Indexed: 12/04/2022] Open
Abstract
ObjectiveThe aim of this study was to evaluate the prognostic value for survival of parameters derived from intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) in patients with nasopharyngeal carcinoma (NPC).MaterialsBaseline IVIM-DWI was performed on 97 newly diagnosed NPC patients in this prospective study. The relationships between the pretreatment IVIM-DWI parametric values (apparent diffusion coefficient (ADC), D, D*, and f) of the primary tumors and the patients’ 3-year survival were analyzed in 97 NPC patients who received chemoradiotherapy. The cutoff values of IVIM parameters for local relapse-free survival (LRFS) were identified by a non-parametric log-rank test. The local-regional relapse-free survival (LRRFS), LRFS, regional relapse-free survival (RRFS), distant metastasis-free survival (DMFS), progression-free survival (PFS), and overall survival (OS) rates were calculated by using the Kaplan–Meier method. A Cox proportional hazards model was used to explore the independent predictors for prognosis.ResultsThere were 97 participants (mean age, 48.4 ± 10.5 years; 65 men) analyzed. Non-parametric log-rank test results showed that the optimal cutoff values of ADC, D, D*, and f were 0.897 × 10−3 mm2/s, 0.699 × 10−3 mm2/s, 8.71 × 10−3 mm2/s, and 0.198%, respectively. According to the univariable analysis, the higher ADC group demonstrated significantly higher OS rates than the low ADC group (p = 0.036), the higher D group showed significantly higher LRFS and OS rates than the low D group (p = 0.028 and p = 0.017, respectively), and the higher D* group exhibited significantly higher LRFS and OS rates than the lower D* group (p = 0.001 and p = 0.002, respectively). Multivariable analyses indicated that ADC and D were the independent prognostic factors for LRFS (p = 0.041 and p = 0.037, respectively), D was an independent prognostic factor for LRRFS (p = 0.045), D* and f were the independent prognostic factors for OS (p = 0.019 and 0.029, respectively), and f acted was an independent prognostic factor for DMFS (p = 0.020).ConclusionsBaseline IVIM-DWI perfusion parameters ADC and D, together with diffusion parameter D*, could act as useful factors for predicting long-term outcomes and selecting high-risk patients with NPC.
Collapse
|
8
|
Arterial spin labeling and diffusion-weighted imaging for identification of retropharyngeal lymph nodes in patients with nasopharyngeal carcinoma. Cancer Imaging 2022; 22:40. [PMID: 35978445 PMCID: PMC9387018 DOI: 10.1186/s40644-022-00480-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022] Open
Abstract
Background To evaluate the parameters derived from arterial spin labeling (ASL) and multi-b-value diffusion-weighted imaging (DWI) for differentiating retropharyngeal lymph nodes (RLNs) in patients with nasopharyngeal carcinoma (NPC). Methods This prospective study included 50 newly diagnosed NPC and 23 healthy control (HC) participants. RLNs of NPC were diagnosed according to the follow-up MRI after radiotherapy. Parameters derived from ASL and multi-b-value DWI, and RLNs axial size on pre-treatment MRI among groups were compared. Receiver operating characteristic curve (ROC) was used to analyze the diagnostic efficiency. Results A total of 133 RLNs were collected and divided into a metastatic group (n = 71) and two non-metastatic groups (n = 62, including 29 nodes from NPC and 33 nodes from HC). The axial size, blood flow (BF), and apparent diffusion coefficient (ADC) of RLNs were significantly different between the metastasis and the non-metastasis group. For NPC patients with a short axis < 5 mm or < 6 mm, or long axis < 7 mm, if BF > 54 mL/min/100 g or ADC ≤ 0.95 × 10−3 mm2/s, the RLNs were still considered metastatic. Compared with the index alone, a combination of size and functional parameters could improve the accuracy significantly, except the long axis combined with ADC; especially, combined size with BF exhibited better performance with an accuracy of 91.00–92.00%. Conclusions ASL and multi-b-value DWI could help determine the N stage of NPC, while the BF combination with RLNs size may significantly improve the diagnostic efficiency. Supplementary Information The online version contains supplementary material available at 10.1186/s40644-022-00480-4.
Collapse
|
9
|
Wong KL, Cheng KH, Lam SK, Liu C, Cai J. Review of functional magnetic resonance imaging in the assessment of nasopharyngeal carcinoma treatment response. PRECISION RADIATION ONCOLOGY 2022. [DOI: 10.1002/pro6.1161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Kwun Lam Wong
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR People's Republic of China
- Department of Radiotherapy Hong Kong Sanatorium & Hospital HKSH Medical Group Hong Kong SAR People's Republic of China
| | - Ka Hei Cheng
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR People's Republic of China
| | - Sai Kit Lam
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR People's Republic of China
| | - Chenyang Liu
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR People's Republic of China
| | - Jing Cai
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR People's Republic of China
| |
Collapse
|
10
|
Value of Diffusion-Weighted Imaging and Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Prediction of Treatment Outcomes in Nasopharyngeal Carcinoma. J Comput Assist Tomogr 2022; 46:664-672. [PMID: 35483078 DOI: 10.1097/rct.0000000000001304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Magnetic resonance imaging (MRI) parameters that reflect the tumor microenvironment of nasopharyngeal carcinoma (NPC) may predict treatment response and facilitate treatment planning. This study aimed to evaluate the diffusion-weighted imaging and dynamic contrast-enhanced MRI (DCE-MRI) values for predicting the treatment outcomes in NPC patients. METHODS Eighty-three patients with NPC underwent pretreatment MRI simulation with diffusion-weighted imaging and dynamic contrast-enhanced MRI. Average values of the apparent diffusion coefficient (ADC), Ktrans, Kep, Ve, Vp, and tumor volume of the primary tumors were measured. Other potential clinical characteristics (age, sex, staging, pathology, pretreatment Epstein-Barr virus level, and treatment type) were analyzed. Patients underwent follow-up imaging 6 months after treatment initiation. Treatment responses were assigned according to the Response Evaluation Criteria in Solid Tumors guideline (version 1.1). RESULTS Fifty-one patients showed complete response (CR), whereas 32 patients did not (non-CR). Univariable logistic regression with variables dichotomized by optimal cutoff values showed that ADC ≥1.45 × 10-3 mm2/s, Vp ≥0.14, tumor volume of ≥14.05 mL, high stage (stages III and IV), and Epstein-Barr virus level of ≥2300 copies/mL were predictors of non-CR (P = 0.008, 0.05, 0.01, 0.009, and 0.04, respectively). The final multivariable model, consisting of a combination of ADC ≥1.45 × 10-3 mm2/s, Vp ≥0.14, and high stage, could predict non-CR with a good discrimination ability (area under the receiver operating characteristic curve, 0.76 [95% confidence interval, 0.66-0.87]; sensitivity, 62.50%; specificity, 80.39%; and accuracy 73.49%). CONCLUSIONS A multivariable prediction model using a combination of ADC ≥1.45 × 10-3 mm2/s, Vp ≥0.14, and high stage can be effective for treatment response prediction in NPC patients.
Collapse
|
11
|
Volumetric Analysis of Intravoxel Incoherent Motion Diffusion-Weighted Imaging for Predicting the Response to Chemotherapy in Patients With Locally Advanced Non-Small Cell Lung Cancer. J Comput Assist Tomogr 2022; 46:406-412. [PMID: 35405718 DOI: 10.1097/rct.0000000000001282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We aimed to prospectively investigate intravoxel incoherent motion parameters to predict the response to chemotherapy in locally advanced non-small cell lung cancer (NSCLC) patients. METHODS From July 2016 to March 2018, 30 advanced NSCLC patients were enrolled and underwent chest intravoxel incoherent motion-diffusion-weighted imaging at Siemens 3T magnetic resonance imaging before and at the end of the first cycle of chemotherapy. Regions of interest were drawn including the whole tumor volume to derive the apparent diffusion coefficient value, D, D*, and f, respectively. Time-dependent receiver operating characteristic curves were generated to evaluate the cutoff values of continuous variables. A Cox proportional hazards model was used to assess the independent predictors of progression-free survival (PFS) and overall survival (OS). Kaplan-Meier curves and log-rank test were generated. RESULTS Among the 30 patients, 28 cases (93.3%) died and 2 cases (6.7%) survived till the closeout date. Univariate Cox regression analyses revealed that the significant predictors of PFS and OS were the tumor size reduction rate, the change rates of D and apparent diffusion coefficient values, and the D value before therapy (PFS: P = 0.015, hazard ratio [HR] = 2.841; P < 0.001, HR = 5.840; P = 0.044, HR = 2.457; and P = 0.027, HR = 2.715; OS: P = 0.008, HR = 2.987; P < 0.001, HR = 4.357; P = 0.006, HR = 3.313; and P = 0.013, HR = 2.941, respectively). Multivariate Cox regression analysis suggested that △D% was identified as independent predictors of both PFS and OS (P = 0.003, HR = 9.200 and P = 0.016, HR = 4.617). In addition, the cutoff value of △D% was 21.06% calculated by receiver operating characteristic curve analysis. In the Kaplan-Meier analysis, the PFS and OS were significantly greater in the group of patients with △D% larger than 21.06% (log-rank test, χ2 = 16.453, P < 0.001; χ2 = 13.952, P < 0.001). CONCLUSIONS Intravoxel incoherent motion-diffusion-weighted imaging was preferred for predicting the prognosis of advanced NSCLC patients treated with chemotherapy. A D increase more than 21.06% at 1 month was associated with a lower rate of disease progression and death.
Collapse
|
12
|
Tangyoosuk T, Lertbutsayanukul C, Jittapiromsak N. Utility of diffusion-weighted magnetic resonance imaging in predicting the treatment response of nasopharyngeal carcinoma. Neuroradiol J 2021; 35:477-485. [PMID: 34730049 PMCID: PMC9437492 DOI: 10.1177/19714009211055191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Predicting the treatment response in patients with nasopharyngeal carcinoma (NPC) is challenging. This study evaluated the utility of diffusion-weighted imaging (DWI) in predicting the treatment response in patients with NPC. METHODS We prospectively enrolled 33 patients with newly diagnosed NPC who underwent magnetic resonance imaging with the propeller DWI and apparent diffusion coefficient (ADC) map before and at 5 weeks after chemoradiation. The following ADC values of the primary tumor were calculated: pre-treatment ADC (pre-ADC), pre-treatment ADC ratio (pre-ADC ratio), ADC change (▵ADC), ADC change ratio (▵ADC ratio), and percentage of ADC change (▵%ADC). The correlations between these parameters and treatment outcomes were explored, and the patients were classified as good responders (complete response) and poor responders (stable disease, partial response, or progressive disease) based on the Response Evaluation Criteria in Solid Tumors, version 1.1. RESULTS The ▵ADC, ▵ADC ratio, and ▵%ADC were significantly lower in the poor-responder group (n = 12) than in the good-responder group (n = 21; p = 0.001, p = 0.002, and p = 0.004, respectively). There was no significant difference between groups in the pre-ADC and pre-ADC ratios (p = 0.602 and p = 0.685, respectively). The optimal ▵ADC, ▵ADC ratio, and ▵%ADC cutoff values for predicting poor response were >0.65 mm2/sec, 0.28, and 60%, respectively (sensitivity: 83.3%, 75%, and 83.3%; specificity: 71.4%, 85.7%, and 71.4%, respectively). CONCLUSION The ▵ADC, ▵ADC ratio, and ▵%ADC obtained during the pre-treatment and mid-treatment periods could be potential biomarkers for predicting treatment response in patients with NPC.
Collapse
Affiliation(s)
- Thidaporn Tangyoosuk
- Department of Radiology, Faculty of Medicine, Division of Diagnostic Radiology, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Chawalit Lertbutsayanukul
- Department of Radiology, Faculty of Medicine, Division of Radiation Oncology, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nutchawan Jittapiromsak
- Department of Radiology, Faculty of Medicine, Division of Diagnostic Radiology, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
13
|
Diffusion-weighted MRI for predicting treatment response in patients with nasopharyngeal carcinoma: a systematic review and meta-analysis. Sci Rep 2021; 11:18986. [PMID: 34556743 PMCID: PMC8460673 DOI: 10.1038/s41598-021-98508-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 09/08/2021] [Indexed: 12/22/2022] Open
Abstract
Early prediction of treatment response in nasopharyngeal carcinoma is clinically relevant for optimizing treatment strategies. This meta-analysis was performed to evaluate whether apparent diffusion coefficient (ADC) from diffusion-weighted imaging (DWI) can predict treatment response of patients with nasopharyngeal carcinoma. A systematic search of PubMed-MEDLINE and Embase was performed to identify relevant original articles until July 22, 2021. We included studies which performed DWI for predicting locoregional treatment response in nasopharyngeal carcinoma treated with neoadjuvant chemotherapy, definitive chemoradiation, or radiation therapy. Hazard ratios were meta-analytically pooled using a random-effects model for the pooled estimates of overall survival, local relapse-free survival, distant metastasis-free survival and their 95% CIs. ADC showed a pooled sensitivity of 87% (95% CI 72–94%) and specificity of 70% (95% CI 56–80%) for predicting treatment response. Significant between-study heterogeneity was observed for both pooled sensitivity (I2 = 68.5%) and specificity (I2 = 92.2%) (P < 0.01). The pooled hazard ratios of low pretreatment ADC for assessing overall survival, local relapse-free survival, and distant metastasis-free survival were 1.42 (95% CI 1.09–1.85), 2.31 (95% CI 1.42–3.74), and 1.35 (95% CI 1.05–1.74), respectively. In patients with nasopharyngeal carcinoma, pretreatment ADC demonstrated good predictive performance for treatment response.
Collapse
|
14
|
Fujima N. Editorial for "Intra-voxel incoherent motion (IVIM) MRI for prediction of induction chemotherapy response in locally advanced hypopharyngeal carcinoma: comparison with model-free dynamic contrast-enhanced MRI". J Magn Reson Imaging 2021; 54:101-102. [PMID: 33779001 DOI: 10.1002/jmri.27621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
15
|
Intravoxel incoherent motion as a tool to detect early microstructural changes in meningiomas treated with proton therapy. Neuroradiology 2021; 63:1053-1060. [PMID: 33392736 DOI: 10.1007/s00234-020-02630-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE To assess early microstructural changes of meningiomas treated with proton therapy through quantitative analysis of intravoxel incoherent motion (IVIM) and diffusion-weighted imaging (DWI) parameters. METHODS Seventeen subjects with meningiomas that were eligible for proton therapy treatment were retrospectively enrolled. Each subject underwent a magnetic resonance imaging (MRI) including DWI sequences and IVIM assessments at baseline, immediately before the 1st (t0), 10th (t10), 20th (t20), and 30th (t30) treatment fraction and at follow-up. Manual tumor contours were drawn on T2-weighted images by two expert neuroradiologists and then rigidly registered to DWI images. Median values of the apparent diffusion coefficient (ADC), true diffusion (D), pseudo-diffusion (D*), and perfusion fraction (f) were extracted at all timepoints. Statistical analysis was performed using the pairwise Wilcoxon test. RESULTS Statistically significant differences from baseline to follow-up were found for ADC, D, and D* values, with a progressive increase in ADC and D in conjunction with a progressive decrease in D*. MRI during treatment showed statistically significant differences in D values between t0 and t20 (p = 0.03) and t0 and t30 (p = 0.02), and for ADC values between t0 and t20 (p = 0.04), t10 and t20 (p = 0.02), and t10 and t30 (p = 0.035). Subjects that showed a volume reduction greater than 15% of the baseline tumor size at follow-up showed early D changes, whereas ADC changes were not statistically significant. CONCLUSION IVIM appears to be a useful tool for detecting early microstructural changes within meningiomas treated with proton therapy and may potentially be able to predict tumor response.
Collapse
|
16
|
Song Q, Li F, Chen X, Wang J, Liu H, Cheng Y. Early detection treatment response for head and neck carcinomas using intravoxel incoherent motion-magnetic resonance imaging: a meta-analysis. Dentomaxillofac Radiol 2021; 50:20190507. [PMID: 32286860 DOI: 10.1259/dmfr.20190507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES To evaluate the diagnostic accuracy of intravoxel incoherent motion-MRI (IVIM-MRI) for predicting the treatment response in head and neck squamous cell carcinomas (HNSCC) patients. METHODS A comprehensive literature search was performed to identify original articles on diagnostic performance of IVIM in predicting treatment response in HNSCC patients receiving chemoradiotherapy. The IVIM parameters studied were diffusion coefficient (D), pseudodiffusion coefficient (D*), perfusion fraction (f), and apparent diffusion coefficient. Summary estimates of diagnostic accuracy were obtained by using a random-effects model. Of 65 studies screened, 8 studies with 347 patients were finally included. RESULTS The pooled sensitivities and specificities were 76% [95% confidence interval (CI) 69-82%] and 81% (95% CI 70-89%) for pre-treatment D, and 70% (95% CI 58-80%) and 82% (95% CI 66-92%) for △D, respectively. In addition, the sensitivities and specificities ranged from 41.7 to 94% and 67 to 100% for pre-treatment f, and from 55.7 to 76.5% and 72.2 to 93.3% for pre-treatment apparent diffusion coefficient, respectively. CONCLUSIONS The diffusion-related coefficients pre-treatment D and △D demonstrated good accuracy in predicting early treatment response in HNSCC patients. However, because of the variability in reference test and other limitations of included literature, further investigation is needed before implementing any IVIM strategy into clinical practice.
Collapse
Affiliation(s)
- Qingxu Song
- Department of Radiation Oncology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
| | - Fang Li
- Second Department of Internal Medicine, Laiwu People's Hospital, 79 Fengchengxi Street, Jinan, Shandong, 271100, P.R. China
| | - Xin Chen
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, 324 Jingwu Road, Jinan, Shandong, 250021, P.R. China
| | - Jianbo Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
| | - Hong Liu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
| |
Collapse
|
17
|
Qamar S, King AD, Ai QYH, So TY, Mo FKF, Chen W, Poon DMC, Tong M, Ma BB, Hui EP, Yeung DKW, Wang YX, Yuan J. Pre-treatment intravoxel incoherent motion diffusion-weighted imaging predicts treatment outcome in nasopharyngeal carcinoma. Eur J Radiol 2020; 129:109127. [PMID: 32563165 DOI: 10.1016/j.ejrad.2020.109127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/28/2020] [Accepted: 06/07/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE To evaluate whether pre-treatment intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) can predict treatment outcome after 2 years in patients with nasopharyngeal carcinoma (NPC). METHOD One hundred and sixty-one patients with newly diagnosed NPC underwent pre-treatment IVIM-DWI. Univariate Cox regression analysis was performed to evaluate the correlation of the mean values of the pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), perfusion fraction and apparent diffusion coefficient with local relapse-free survival (LRFS), regional relapse-free survival (RRFS), distant metastases-free survival (DMFS) and disease-free survival (DFS). Significant diffusion parameters, together with staging, age, gender and treatment as confounding factors, were added into a multivariate model. The area under the curves (AUCs) of significant parameters for disease relapse were compared using the Delong test. RESULTS Disease relapse occurred in 30 % of the patients at a median follow-up time of 52.1 months. The multivariate analysis showed that high D and T-staging were correlated with poor LRFS (p = 0.042 and 0.020, respectively) and poor DFS (p = 0.023 and 0.001, respectively); low D* and high T-staging with poor RRFS (p = 0.020 and 0.033, respectively); and high N-staging with poor DMFS (p = 0.006). D with the optimal threshold of ≥0.68 × 10-3 mm2/s and T-staging showed similar AUCs (AUC = 0.614 and 0.651, respectively; p = 0.493) for predicting disease relapse. CONCLUSION High D and low D* were predictors of poor locoregional outcome but none of the diffusion parameters predicted DMFS in NPC.
Collapse
Affiliation(s)
- Sahrish Qamar
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Ann D King
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.
| | - Qi-Yong H Ai
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Tiffany Y So
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Frankie Kwok Fai Mo
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Darren M C Poon
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Macy Tong
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Brigette B Ma
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Edwin P Hui
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - David Ka-Wai Yeung
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Yi-Xiang Wang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Jing Yuan
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| |
Collapse
|
18
|
Qin Y, Yu X, Hou J, Hu Y, Li F, Wen L, Lu Q, Liu S. Prognostic Value of the Pretreatment Primary Lesion Quantitative Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Nasopharyngeal Carcinoma. Acad Radiol 2019; 26:1473-1482. [PMID: 30772137 DOI: 10.1016/j.acra.2019.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
RATIONALE AND OBJECTIVES Early identifying the long-term outcome of chemoradiotherapy is helpful for personalized treatment in nasopharyngeal carcinoma (NPC). This study aimed to investigate the prognostic significance of pretreatment quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for NPC. MATERIALS AND METHODS The relationships between the prognosis and pretreatment quantitative DCE-MRI (Ktrans, Kep, Ve, and fpv) values of the primary tumors were analyzed in 134 NPC patients who received chemoradiotherapy. Kaplan-Meier analysis was performed to calculate the local-regional relapse-free survival (LRRFS), local relapse-free survival (LRFS), regional relapse-free survival, distant metastasis-free survival (DMFS), progression-free survival, and overall survival rates. Cox proportional hazards model was used to explore the independent predictors for prognosis. RESULTS The local-failure group had significantly higher Ve (p = 0.033) and fpv values (p = 0.005) than the non-local-failure group. The Ve-high group showed significantly lower LRRFS (p = 0.015) , LRFS (p = 0.013) , DMFS (p = 0.027) and progression-free survival (p = 0.035) rates than the Ve-low group. The fpv-high group exhibited significantly lower LRRFS (p = 0.004) and LRFS (p = 0.005) rates than the fpv-low group. Ve was the independent predictor for LRRFS (p = 0.008), LRFS (p = 0.007), DMFS (p = 0.041), and overall survival (p = 0.022). fpv was the independent indicator for LRRFS (p = 0.003) and LRFS (p = 0.001). CONCLUSION Baseline quantitative DCE-MRI may be valuable in predicting the prognosis for NPC.
Collapse
Affiliation(s)
- Yuhui Qin
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, 283 Tongzipo Road, Changsha 410013, Hunan, PR China
| | - Xiaoping Yu
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, 283 Tongzipo Road, Changsha 410013, Hunan, PR China.
| | - Jing Hou
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, 283 Tongzipo Road, Changsha 410013, Hunan, PR China
| | - Ying Hu
- Department of Radiotherapy, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
| | - Feiping Li
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, 283 Tongzipo Road, Changsha 410013, Hunan, PR China
| | - Lu Wen
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, 283 Tongzipo Road, Changsha 410013, Hunan, PR China
| | - Qiang Lu
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, 283 Tongzipo Road, Changsha 410013, Hunan, PR China
| | - Siye Liu
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, 283 Tongzipo Road, Changsha 410013, Hunan, PR China
| |
Collapse
|
19
|
Liu S, Wen L, Hou J, Nie S, Zhou J, Cao F, Lu Q, Qin Y, Fu Y, Yu X. Predicting the pathological response to chemoradiotherapy of non-mucinous rectal cancer using pretreatment texture features based on intravoxel incoherent motion diffusion-weighted imaging. Abdom Radiol (NY) 2019; 44:2689-2698. [PMID: 31030244 DOI: 10.1007/s00261-019-02032-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To investigate the performance of the mean parametric values and texture features based on intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) on identifying pathological complete response (pCR) to neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC). METHODS Pretreatment IVIM-DWI was performed on 41 LARC patients receiving nCRT in this prospective study. The values of IVIM-DWI parameters (apparent diffusion coefficient, ADC; pure diffusion coefficient, D; pseudo-diffusion coefficient, D* and perfusion fraction, f), the first-order, and gray-level co-occurrence matrix (GLCM) texture features were compared between the pCR (n = 9) and non-pathological responder (non-pCR, n = 32) groups. Receiver operating characteristic (ROC) curves in univariate and multivariate logistic regression analysis were generated to determine the efficiency for identifying pCR. RESULTS The values of IVIM-DWI parameters and first-order texture features did not show significant differences between the pCR and non-pCR groups. The pCR group had lower Contrast and DifVarnc values extracted from the ADC, D, and D* maps, respectively, as well as lower CorrelatD value. Higher CorrelatD*, Correlatf, SumAvergADC, and SumAvergD values were observed in the pCR group. The area under the ROC curve (AUC) values for the individual predictors in univariate analysis ranged from 0.698 to 0.837, with sensitivities from 43.75% to 87.50% and specificities from 66.67 to 100.00%. In multivariate analysis, CorrelatD* (P < 0.001), DifVarncADC (P = 0.024), and DifVarncD (P < 0.001) were the independent predictors to pCR, with an AUC of 0.986, a sensitivity of 93.75%, and a specificity of 100.00%. CONCLUSION Pretreatment GLCM analysis based on IVIM-DWI may be a potential approach to identify the pathological response of LARC.
Collapse
Affiliation(s)
- Siye Liu
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine & Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410006, Hunan, People's Republic of China
| | - Lu Wen
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine & Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410006, Hunan, People's Republic of China
| | - Jing Hou
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine & Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410006, Hunan, People's Republic of China
| | - Shaolin Nie
- Department of Colorectal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410006, Hunan, People's Republic of China
| | - Jumei Zhou
- Department of Radiotherapy, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410006, Hunan, People's Republic of China
| | - Fang Cao
- Department of Pathology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410006, Hunan, People's Republic of China
| | - Qiang Lu
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine & Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410006, Hunan, People's Republic of China
| | - Yuhui Qin
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine & Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410006, Hunan, People's Republic of China
| | - Yi Fu
- Department of Medical Service, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410006, Hunan, People's Republic of China
| | - Xiaoping Yu
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine & Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410006, Hunan, People's Republic of China.
| |
Collapse
|
20
|
Sun NN, Liu C, Ge XL, Wang J. Dynamic contrast-enhanced MRI for advanced esophageal cancer response assessment after concurrent chemoradiotherapy. ACTA ACUST UNITED AC 2018; 24:195-202. [PMID: 30091709 DOI: 10.5152/dir.2018.17369] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE We aimed to evaluate the treatment response of patients with esophageal cancer after concurrent chemoradiation therapy (CRT) using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). METHODS This retrospective study included 59 patients with histologically confirmed esophageal squamous cell carcinoma. The patients underwent DCE-MRI before and 4 weeks after CRT. Patients with complete response were defined as the CR group; partial response, stable disease, and progressive disease patients were defined as the non-CR group. DCE-MRI parameters (Ktrans, Ve, and Kep) were measured and compared between pre- and post-CRT in the CR and non-CR groups, respectively. Pre-CRT and post-CRT parameters were used to calculate the absolute change and the ratio of change. DCE-MRI parameters were compared between the CR and non-CR groups. Receiver operating characteristic (ROC) curves were used to verify diagnostic performance. RESULTS Patients with higher T-stage esophageal cancer might present with poorer response. After CRT, the Ktrans and Kep values significantly decreased in the CR group, whereas only Kep value decreased in the non-CR group. The post-Ktrans and post-Kep values were observed to be significantly lower in the CR group than in the non-CR group. The absolute change and ratio of change of both Ktrans and Kep were higher in the CR group than in the non-CR group. Based on ROC analysis, the ratio of change in Ktrans was the best parameter to assess treatment response (AUC= 0.840). CONCLUSION DCE-MRI parameters are valuable in predicting and assessing concurrent CRT response for advanced esophageal cancer.
Collapse
Affiliation(s)
- Na-Na Sun
- Departments of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chang Liu
- Departments of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Lin Ge
- Departments of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Departments of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Investigating the correlation of arterial spin labeling and dynamic contrast enhanced perfusion in primary tumor of nasopharyngeal carcinoma. Eur J Radiol 2018; 108:222-229. [DOI: 10.1016/j.ejrad.2018.09.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 09/26/2018] [Accepted: 09/30/2018] [Indexed: 12/11/2022]
|
22
|
Dynamic Contrast-Enhanced Magnetic Resonance Imaging of Advanced Cervical Carcinoma: The Advantage of Perfusion Parameters From the Peripheral Region in Predicting the Early Response to Radiotherapy. Int J Gynecol Cancer 2018; 28:1342-1349. [DOI: 10.1097/igc.0000000000001308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ObjectiveThis study aimed to investigate the importance of perfusion parameters from the peripheral region in predicting the early response to radiotherapy for advanced cervical carcinoma by using dynamic contrast-enhanced (DCE) perfusion magnetic resonance imaging (MRI).MethodsOne hundred eight patients with advanced cervical carcinoma were enrolled into this study. Dynamic contrast-enhanced perfusion MR examinations were performed for all the patients before radiotherapy. Perfusion parameters were obtained from the central region and the peripheral region of tumor respectively. After radiotherapy, the patients were classified into responders and nonresponders according to tumor shrinkage on the basis of follow-up MRI examination. The mean follow-up time lasted 12 months. The perfusion parameters were compared between the 2 groups. The relationship between perfusion parameters from 2 different regions of tumor and treatment effect was analyzed.ResultsThe mean value of volume transfer constant (Ktrans), rate constant (Kep) or extravascular extracellular volume fraction (Ve) from the peripheral region was higher than that from the central region of tumor, respectively (P = 0.01, 004, 0.03). Responders had higher Ktransperipheral (Ktrans from the peripheral region) and Ktranscentral (Ktrans from the central region) values than nonresponders (P = 0.04, 0.01). Responders had higher Kepperipheral (Kep from the peripheral region) than nonresponders (P = 0.03). Responders had lower Veperipheral (Ve from the peripheral region) than nonresponders (P = 0.04). At logistic regression analysis, the perfusion parameters that had predicting value were Ktransperipheral, Veperipheral, Kepperipheral and Ktranscentral according to diagnostic potency.ConclusionsCompared with perfusion parameters from the central region of tumor, perfusion parameters from the peripheral region are more valuable in predicting the early response to radiotherapy for advanced cervical carcinoma.
Collapse
|
23
|
Zhong Y, Xiao Z, Tang Z, Qiang J, Wang R. Intravoxel incoherent motion MRI for differentiating sinonasal small round cell malignant tumours (SRCMTs) from Non-SRCMTs: comparison and correlation with dynamic contrast-enhanced MRI. Clin Radiol 2018; 73:966-974. [PMID: 30086857 DOI: 10.1016/j.crad.2018.07.097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 07/05/2018] [Indexed: 12/13/2022]
Abstract
AIM To investigate the value of intravoxel incoherent motion (IVIM) in the differentiation of sinonasal small round cell malignant tumours (SRCMTs) from non-SRCMTs and to compare and correlate these results with those of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI). MATERIALS AND METHODS Ninety patients with histologically confirmed sinonasal malignant tumours (53 SRCMTs and 37 non-SRCMTs) who underwent conventional MRI, IVIM, and DCE-MRI before treatment were enrolled. The IVIM and DCE-MRI parameters were measured. Statistical analyses were performed using Student's t-tests, receiver operating characteristic (ROC) curve analyses, and Spearman's correlation coefficients. RESULTS A lower pure diffusion coefficient (D) value and a higher pseudo-diffusion coefficient (D*) value were found in the sinonasal SRCMTs than in the non-SRCMTs (p<0.001 and p=0.011, respectively). Moreover, the mean extravascular extracellular space volume ratio (Ve) of the SRCMTs was significantly lower than that of the non-SRCMTs (p=0.020). ROC curve analysis showed that the diagnostic performance of D outperformed those of the other perfusion and diffusion parameters. A cut-off D value of 0.56 ×10-3 mm2/s yielded a sensitivity of 80.4%, a specificity of 75%, and an accuracy of 78.2%, with an AUC of 0.825. Significant but poor-to-fair correlations were found between the parameters from IVIM and DCE-MRI. CONCLUSIONS The D and D* values of IVIM and the Ve value of DCE-MRI are helpful in distinguishing sinonasal SRCMTs from non-SRCMTs, with the D values having the best diagnostic efficiency.
Collapse
Affiliation(s)
- Y Zhong
- Department of Radiology, Jinshan Hospital of Fudan University, Shanghai Medical College, Shanghai 201508, China; Department of Radiology, Eye and ENT Hospital of Fudan University, Shanghai Medical College, Shanghai 200031, China; Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200011, China
| | - Z Xiao
- Department of Radiology, Eye and ENT Hospital of Fudan University, Shanghai Medical College, Shanghai 200031, China
| | - Z Tang
- Department of Radiology, Eye and ENT Hospital of Fudan University, Shanghai Medical College, Shanghai 200031, China.
| | - J Qiang
- Department of Radiology, Jinshan Hospital of Fudan University, Shanghai Medical College, Shanghai 201508, China.
| | - R Wang
- Department of Radiology, Eye and ENT Hospital of Fudan University, Shanghai Medical College, Shanghai 200031, China
| |
Collapse
|
24
|
Emerging Magnetic Resonance Imaging Technologies for Radiation Therapy Planning and Response Assessment. Int J Radiat Oncol Biol Phys 2018; 101:1046-1056. [DOI: 10.1016/j.ijrobp.2018.03.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/12/2018] [Accepted: 03/22/2018] [Indexed: 12/27/2022]
|
25
|
Qin Y, Yu X, Hou J, Hu Y, Li F, Wen L, Lu Q, Fu Y, Liu S. Predicting chemoradiotherapy response of nasopharyngeal carcinoma using texture features based on intravoxel incoherent motion diffusion-weighted imaging. Medicine (Baltimore) 2018; 97:e11676. [PMID: 30045324 PMCID: PMC6078652 DOI: 10.1097/md.0000000000011676] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The aim of the study was to investigative the utility of gray-level co-occurrence matrix (GLCM) texture analysis based on intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) for predicting the early response to chemoradiotherapy for nasopharyngeal carcinoma (NPC).Baseline IVIM-DWI was performed on 81 patients with NPC receiving chemoradiotherapy in a prospective nested case-control study. The patients were categorized into the residue (n = 11) and nonresidue (n = 70) groups, according to whether there was local residual lesion or not at the end of chemoradiotherapy. The pretreatment tumor volume and the values of IVIM-DWI parameters (apparent diffusion coefficient [ADC], D, D, and f) and GLCM features based on IVIM-DWI were compared between the 2 groups. Receiver operating characteristic (ROC) curves in univariate and multivariate logistic regression analysis were generated to determine significant indicator of treatment response.The nonresidue group had lower tumor volume, ADC, D, CorrelatADC, CorrelatD, InvDfMomADC, InvDfMomD and InvDfMomD values, together with higher ContrastD, Contrastf, SumAvergADC, SumAvergD, and SumAvergD values, than the residue group (all P < .05). Based on ROC curve in univariate analysis, the area under the curve (AUC) values for individual GLCM features in the prediction of the treatment response ranged from 0.635 to 0.879, with sensitivities from 54.55% to 100.00% and specificities from 52.86% to 85.71%. Multivariate logistic regression analysis demonstrated D (P = .026), InvDfMomADC (P = .033) and SumAvergD (P = .015) as the independent predictors for identifying NPC without residue, with an AUC value of 0.977, a sensitivity of 90.91% and a specificity of 95.71%.Pretreatment GLCM features based on IVIM-DWI, especially on the diffusion-related maps, may have the potential to predict the early response to chemoradiotherapy for NPC.
Collapse
Affiliation(s)
| | | | - Jing Hou
- Department of Diagnostic Radiology
| | | | | | - Lu Wen
- Department of Diagnostic Radiology
| | - Qiang Lu
- Department of Diagnostic Radiology
| | - Yi Fu
- Department of Medical Service, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha, Hunan, China
| | - Siye Liu
- Department of Diagnostic Radiology
| |
Collapse
|
26
|
Zhou Q, Zeng F, Ding Y, Fuller CD, Wang J. Meta-analysis of diffusion-weighted imaging for predicting locoregional failure of chemoradiotherapy in patients with head and neck squamous cell carcinoma. Mol Clin Oncol 2017; 8:197-203. [PMID: 29423223 DOI: 10.3892/mco.2017.1504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/24/2017] [Indexed: 02/06/2023] Open
Abstract
The purpose of this study was to evaluate the accuracy of diffusion-weighted imaging (DWI) for predicting locoregional failure of chemoradiotherapy in patients with head and neck squamous cell carcinoma (HNSCC). A comprehensive search was conducted through the EMBASE, PubMed and Cochrane Library databases for relevant publications. Stata software was used to calculate the pooled sensitivity, specificity, likelihood ratios and diagnostic odds ratios, and to construct a summary receiver operating characteristics (sROC) curve for DWI. A total of 9 studies comprising 421 patients were included. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio and diagnostic odds ratio were 0.82 [95% confidence interval (CI): 0.72-0.88], 0.70 (95% CI: 0.62-0.77), 2.7 (95% CI: 2.1-3.6), 0.26 (95% CI: 0.17-0.41), and 10.48 (95% CI: 5.35-20.53), respectively. The area under the sROC curve was 0.84 (95% CI: 0.81-0.87). Therefore, DWI appears to be a promising imaging modality for predicting local failure of chemoradiotherapy in patients with HNSCC.
Collapse
Affiliation(s)
- Qiming Zhou
- Department of Oncology, The Sixth People's Hospital, Shenzhen, Guangdong 518052, P.R. China.,Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fangfang Zeng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yao Ding
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Clifton D Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jihong Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|