1
|
Shen X, Yan Z, Huang Y, Zhu Q, Zhang G, Ci H, Wu Q, Wu L. ALDH2 as an immunological and prognostic biomarker: Insights from pan-cancer analysis. Medicine (Baltimore) 2024; 103:e37820. [PMID: 38640328 PMCID: PMC11030019 DOI: 10.1097/md.0000000000037820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/17/2024] [Accepted: 03/15/2024] [Indexed: 04/21/2024] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) plays a critical role in safeguarding cells against acetaldehyde toxicity and is closely linked to human metabolism. Nevertheless, the involvement of ALDH2 in cancer remains enigmatic. This investigation seeks to comprehensively assess ALDH2's significance in pan-cancer. We conducted an all-encompassing analysis of pan-cancer utilizing multiple databases, including TCGA, linkedomicshs, UALCAN, and Kaplan-Meier plotter. We employed diverse algorithms such as EPIC, MCPCOUNTER, TIDTIMER, xCell, MCP-counter, CIBERSORT, quanTIseq, and EPIC to examine the connection between ALDH2 expression and immune cell infiltration. Single-cell sequencing analysis furnished insights into ALDH2's functional status in pan-cancer. Immunohistochemical staining was performed to validate ALDH2 expression in cancer tissues. In a comprehensive assessment, we observed that tumor tissues demonstrated diminished ALDH2 expression levels compared to normal tissues across 16 different cancer types. ALDH2 expression exhibited a significant positive correlation with the infiltration of immune cells, including CD4 + T cells, CD8 + T cells, neutrophils, B cells, and macrophages, in various tumor types. Moreover, this study explored the association between ALDH2 and patient survival, examined the methylation patterns of ALDH2 in normal and primary tumor tissues, and delved into genetic variations and mutations of ALDH2 in tumors. The findings suggest that ALDH2 could serve as a valuable prognostic biomarker in pan-cancer, closely linked to the tumor's immune microenvironment.
Collapse
Affiliation(s)
- Xiaorong Shen
- Department of Pathology, Bengbu Medical University, Bengbu, China
| | - Ziyi Yan
- Department of Pathology, Bengbu Medical University, Bengbu, China
| | - Yuanli Huang
- Department of Pathology, Bengbu Medical University, Bengbu, China
| | - Qing Zhu
- Department of Pathology, Bengbu Medical University, Bengbu, China
| | - Guanghui Zhang
- Department of Pathology, Bengbu Medical University, Bengbu, China
| | - Hongfei Ci
- Department of Pathology, Bengbu Medical University, Bengbu, China
| | - Qiong Wu
- Department of Pathology, Bengbu Medical University, Bengbu, China
| | - Ligao Wu
- Department of Pathology, Bengbu Medical University, Bengbu, China
| |
Collapse
|
2
|
Abusara OH, Ibrahim AIM, Issa H, Hammad AM, Ismail WH. In Vitro Evaluation of ALDH1A3-Affinic Compounds on Breast and Prostate Cancer Cell Lines as Single Treatments and in Combination with Doxorubicin. Curr Issues Mol Biol 2023; 45:2170-2181. [PMID: 36975509 PMCID: PMC10047313 DOI: 10.3390/cimb45030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/18/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
Aldehyde dehydrogenase (ALDH) enzymes are involved in the growth and development of several tissues, including cancer cells. It has been reported that targeting the ALDH family, including the ALDH1A subfamily, enhances cancer treatment outcomes. Therefore, we aimed to investigate the cytotoxicity of ALDH1A3-affinic compounds that have been recently discovered by our group, on breast (MCF7 and MDA-MB-231) and prostate (PC-3) cancer cell lines. These compounds were investigated on the selected cell lines as single treatments and in combination with doxorubicin (DOX). Results showed that the combination treatment experiments of the selective ALDH1A3 inhibitors (compounds 15 and 16) at variable concentrations with DOX resulted in significant increases in the cytotoxic effect on the MCF7 cell line for compound 15, and to a lesser extent for compound 16 on the PC-3 cell line, compared to DOX alone. The activity of compounds 15 and 16 as single treatments on all cell lines was found to be non-cytotoxic. Therefore, our findings showed that the investigated compounds have a promising potential to target cancer cells, possibly via an ALDH-related pathway, and sensitize them to DOX treatment.
Collapse
Affiliation(s)
- Osama H. Abusara
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
- Correspondence:
| | - Ali I. M. Ibrahim
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | | | - Alaa M. Hammad
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Worood H. Ismail
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
4
|
Rodríguez-Zavala JS, Calleja LF, Moreno-Sánchez R, Yoval-Sánchez B. Role of Aldehyde Dehydrogenases in Physiopathological Processes. Chem Res Toxicol 2019; 32:405-420. [PMID: 30628442 DOI: 10.1021/acs.chemrestox.8b00256] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Many different diseases are associated with oxidative stress. One of the main consequences of oxidative stress at the cellular level is lipid peroxidation, from which toxic aldehydes may be generated. Below their toxicity thresholds, some aldehydes are involved in signaling processes, while others are intermediaries in the metabolism of lipids, amino acids, neurotransmitters, and carbohydrates. Some aldehydes ubiquitously distributed in the environment, such as acrolein or formaldehyde, are extremely toxic to the cell. On the other hand, aldehyde dehydrogenases (ALDHs) are able to detoxify a wide variety of aldehydes to their corresponding carboxylic acids, thus helping to protect from oxidative stress. ALDHs are located in different subcellular compartments such as cytosol, mitochondria, nucleus, and endoplasmic reticulum. The aim of this review is to analyze, and highlight, the role of different ALDH isoforms in the detoxification of aldehydes generated in processes that involve high levels of oxidative stress. The ALDH physiological relevance becomes evident by the observation that their expression and activity are enhanced in different pathologies that involve oxidative stress such as neurodegenerative disorders, cardiopathies, atherosclerosis, and cancer as well as inflammatory processes. Furthermore, ALDH mutations bring about several disorders in the cell. Thus, understanding the mechanisms by which these enzymes participate in diverse cellular processes may lead to better contend with the damage caused by toxic aldehydes in different pathologies by designing modulators and/or protocols to modify their activity or expression.
Collapse
Affiliation(s)
| | | | - Rafael Moreno-Sánchez
- Departamento de Bioquímica , Instituto Nacional de Cardiología , México 14080 , México
| | - Belem Yoval-Sánchez
- Departamento de Bioquímica , Instituto Nacional de Cardiología , México 14080 , México
| |
Collapse
|
5
|
You L, Li C, Zhao J, Wang DW, Cui W. Associations of common variants at ALDH2 gene and the risk of stroke in patients with coronary artery diseases undergoing percutaneous coronary intervention. Medicine (Baltimore) 2018; 97:e0711. [PMID: 29742731 PMCID: PMC5959384 DOI: 10.1097/md.0000000000010711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Limited data are available about the role of common variants at the aldehyde dehydrogenase 2 gene (ALDH2) on the clinical outcome in Chinese patients with coronary heart disease (CHD) undergoing percutaneous coronary intervention (PCI). In the present study, a total of 1089 patients were consecutively enrolled from January 2012 and July 2013. Six common variants at ALDH2 gene, including rs2339840, rs4648328, rs4767939, rs11066028, rs16941669, and rs671, were selected to test the associations of those polymorphisms with the cardiovascular outcome in patients with CHD after PCI. The clinical endpoints included cardiovascular death, nonfatal myocardial infarction, and nonfatal stroke. The composite of clinical endpoints was defined as the primary endpoint, and every endpoint alone was considered as the secondary endpoints. The median follow-up time was 38.27 months. Our results showed that the common variant rs2339840 was independently associated with a lower risk of stroke in patients with CHD after PCI (codominant model, HR = 0.32, 95% CI, 0.11-0.91, P = .074 for heterozygotes; HR = 0.25, 95% CI, 0.06-1.14, P = .033 for homozygotes; dominant model, HR = 0.32, 95% CI, 0.14-0.74, P = .007). However, no significant associations were found between other 5 single nucleotide polymorphisms (SNPs) and the clinical endpoints. For the first time, the common variant rs2339840 was reported to be a protective factor against stroke in CHD patients with PCI.
Collapse
Affiliation(s)
- Ling You
- Division of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province
| | - Chenze Li
- Departments of Internal Medicine and Genetic diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jinzhao Zhao
- Departments of Internal Medicine and Genetic diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Dao Wen Wang
- Departments of Internal Medicine and Genetic diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Wei Cui
- Division of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province
| |
Collapse
|
6
|
Yin J, Tang W, Long T, Pan H, Liu J, Lv L, Liu C, Shi Y, Zhu J, Sun Y, Shao A, Zhou Q, Ren Z, Ding G, Chen S, Liu Y, Yao J, Ding H, Yan Y, Gu H, Qian C, Wang L, Wang Q, Tan L. Association of ALDH3B2 gene polymorphism and risk factors with susceptibility of esophageal squamous cell carcinoma in a Chinese population: a case-control study involving 2,358 subjects. Oncotarget 2017; 8:110153-110165. [PMID: 29299137 PMCID: PMC5746372 DOI: 10.18632/oncotarget.22656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022] Open
Abstract
Background Esophageal cancer (EC) is the sixth leading cause of cancer-associated death worldwide. The interaction of environmental risk factors and genetic factors might contribute to the carcinogenesis of EC synergistically. Results All seven single locus polymorphisms of ALDH3B2 were not associated with risk of ESCC as evaluated by allelic, dominant, co-dominant, recessive and Cochran-Armitage trend tests. Stratified analyses showed these SNPs were not correlated with the susceptibility of ESCC according to different age, gender, cigarette smoking and alcohol drinking status. None of the major haplotypes were related with ESCC susceptibility. Materials and Methods We conducted a hospital-based case-control study to evaluate the combined effects of environmental risk factors and the single nucleotide polymorphisms (SNPs) of ALDH3B2 gene on the development of esophageal squamous carcinoma (ESCC). A total of 1043 ESCC cases and 1315 controls were recruited for this study. Seven ALDH3B2 SNPs and four environmental factors were selected as independent variables. ALDH3B2 SNPs were determined by ligation detection reaction method. Conclusions Our study suggested that ALDH3B2 rs34589365, rs3741172, rs4646823, rs78402723, rs7947978, rs866907 and rs9787887 polymorphisms were not implicated with altered susceptibility of ESCC according to different age, gender, cigarette smoking and alcohol drinking status. Yet this conclusion needs to be verified in larger studies among different ethnic populations with validation design, the biological function of these SNPs in carcinogenesis are subject to further investigation.
Collapse
Affiliation(s)
- Jun Yin
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China.,Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| | - Weifeng Tang
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Tao Long
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Huiwen Pan
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Jianchao Liu
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Lu Lv
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Chao Liu
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Yijun Shi
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Jingfeng Zhu
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Yangyong Sun
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Aizhong Shao
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Qiang Zhou
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Zhengbing Ren
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Guowen Ding
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Suocheng Chen
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Yan Liu
- Genesky Biotechnologies Inc., Shanghai, 201315, China
| | - Jun Yao
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Hao Ding
- Department of Respirology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Yulan Yan
- Department of Respirology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Haiyong Gu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Cheng Qian
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| | - Liming Wang
- Cancer Institute, Department of Chemotherapy, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| |
Collapse
|