1
|
Liu YC, Liang CH, Wu YJ, Chen CS, Tang EK, Wu FZ. Managing Persistent Subsolid Nodules in Lung Cancer: Education, Decision Making, and Impact of Interval Growth Patterns. Diagnostics (Basel) 2023; 13:2674. [PMID: 37627933 PMCID: PMC10453827 DOI: 10.3390/diagnostics13162674] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
With the popularization of lung cancer screening, many persistent subsolid nodules (SSNs) have been identified clinically, especially in Asian non-smokers. However, many studies have found that SSNs exhibit heterogeneous growth trends during long-term follow ups. This article adopted a narrative approach to extensively review the available literature on the topic to explore the definitions, rationale, and clinical application of different interval growths of subsolid pulmonary nodule management and follow-up strategies. The development of SSN growth thresholds with different growth patterns could support clinical decision making with follow-up guidelines to reduce over- and delayed diagnoses. In conclusion, using different SSN growth thresholds could optimize the follow-up management and clinical decision making of SSNs in lung cancer screening programs. This could further reduce the lung cancer mortality rate and potential harm from overdiagnosis and over management.
Collapse
Affiliation(s)
- Yung-Chi Liu
- Department of Radiology, Xiamen Chang Gung Hospital, Xiamen 361028, China;
- Department of Imaging Technology Division, Xiamen Chang Gung Hospital, Xiamen 361028, China
- Department of Healthcare Administration Department, Xiamen Chang Gung Hospital, Xiamen 361028, China
| | - Chia-Hao Liang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112304, Taiwan;
| | - Yun-Ju Wu
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- Department of Software Engineering and Management, National Kaohsiung Normal University, Kaohsiung 80201, Taiwan
| | - Chi-Shen Chen
- Physical Examination Center, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
| | - En-Kuei Tang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
| | - Fu-Zong Wu
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Education, National Sun Yat-Sen University, Kaohsiung 804241, Taiwan
| |
Collapse
|
2
|
Liang X, Liu M, Li M, Zhang L. Clinical and CT Features of Subsolid Pulmonary Nodules With Interval Growth: A Systematic Review and Meta-Analysis. Front Oncol 2022; 12:929174. [PMID: 35860567 PMCID: PMC9289285 DOI: 10.3389/fonc.2022.929174] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundEstablishing risk-based follow-up management strategies is crucial to the surveillance of subsolid pulmonary nodules (SSNs). However, the risk factors for SSN growth are not currently clear. This study aimed to perform a systematic review and meta-analysis to identify clinical and CT features correlated with SSN growth.MethodsRelevant studies were retrieved from Web of Science, PubMed, Cochrane Library, and EMBASE. The correlations of clinical and CT features with SSN growth were pooled using a random-effects model or fixed-effects model depending on heterogeneity, which was examined by the Q test and I2 test. Pooled odds ratio (OR) or pooled standardized mean differences (SMD) based on univariate analyses were calculated to assess the correlation of clinical and CT features with SSN growth. Pooled ORs based on multivariate analyses were calculated to find out independent risk factors to SSN growth. Subgroup meta-analysis was performed based on nodule consistency (pure ground-glass nodule (pGGN) and part-solid nodule (PSN). Publication bias was examined using funnel plots.ResultsNineteen original studies were included, consisting of 2444 patients and 3012 SSNs. The median/mean follow-up duration of these studies ranged from 24.2 months to 112 months. Significant correlations were observed between SSN growth and eighteen features. Male sex, history of lung cancer, nodule size > 10 mm, nodule consistency, and age > 65 years were identified as independent risk factors for SSN growth based on multivariate analyses results. Eight features, including male sex, smoking history, nodule size > 10 mm, larger nodule size, air bronchogram, higher mean CT attenuation, well-defined border, and lobulated margin were detected to be significantly correlated with pGGNs growth. Smoking history showed no significant correlation with pGGN growth based on the multivariate analysis results.ConclusionsEighteen clinical and CT features were identified to be correlated with SSN growth, among which male sex, history of lung cancer, nodule size > 10 mm, nodule consistency and age > 65 years were independent risk factors while history of lung cancer was not correlated with pGGN growth. These factors should be considered when making risk-based follow-up plans for SSN patients.
Collapse
|
3
|
Affiliation(s)
- Takatoshi Aoki
- Department of Radiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| |
Collapse
|