1
|
Li D, Zhao X, Xiao Q, Yang R, Li Z, Xie Y, Mao X, Li X, Hu W, Deng Y. Evaluation of left ventricular flow field changes after stress in patients with nonobstructive coronary artery disease using ultrasonic flow vector imaging. Front Cardiovasc Med 2024; 11:1340289. [PMID: 38576423 PMCID: PMC10991677 DOI: 10.3389/fcvm.2024.1340289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Purpose Vector flow mapping and treadmill exercise stress echocardiography were used to evaluate and explore changes in the left ventricular (LV) flow field of patients with nonobstructive coronary artery disease. Methods Overall, 34 patients with nonobstructive (<50%) left anterior descending coronary artery stenosis (case group) and 36 patients with no coronary artery stenosis (control group) were included. Apical four-, three-, and two-chamber echocardiographic images were collected at rest and during early recovery from treadmill exercise. LV flow field, vortex area, and circulation (cir) changes were recorded in different phases: isovolumetric systole (S1), rapid ejection (S2), slow ejection (S3), isovolumetric diastole (D1), rapid filling (D2), slow filling (D3), and atrial systole (D4). Intra- and inter-group differences were compared before and after exercise loading. Results The control and case groups demonstrated regular trends of eddy current formation and dissipation at rest and under stress. Compared with the control group, the case group had irregular streamline distributions. Abnormal vortices formed in the S1 and D3 apical segments and D1 left ventricular middle segment in the resting group. Compared with the control group, the resting group had decreased left ventricular S1 vortex areas and increased S3 vortex areas. The post-stress D1 and D3 vortex areas and D1 and D2 cir increased. Compared with at rest, after stress, the control group had decreased S1, S3, D2, and D3 vortex areas; increased S2, D1, D3, and D4 cir; and decreased D2 cir. After stress, the case group had decreased S3 and D2 vortex areas, increased D1 vortex areas, and increased S2, D1, D3, and D4 cir (P all < 0.001). Logistic regression and ROC curve analyses show that increased D1 vortex area after stress is an independent risk factor for stenosis in nonobstructive stenosis of coronary arteries (OR: 1.007, 95% CI: 1.005-1.010, P < 0.05). A D1 vortex area cutoff value of 82.26 had an AUC, sensitivity, and specificity of 0.67, 0.655, and 0.726, respectively. Conclusion The resting left ventricular flow field changed in patients with nonobstructive left anterior descending coronary artery stenosis. Both groups had more disordered left ventricular blood flow after stress. The increased D1 vortex area after stress is an independent risk factor for mild coronary stenosis and may contribute to the assessment of nonobstructive coronary stenosis. VFM combined with treadmill stress is useful in evaluating left ventricular flow field changes in patients with nonobstructive coronary artery disease, which is valuable in the early evaluation of coronary heart disease.
Collapse
Affiliation(s)
- Dongmei Li
- School of Medicine, University of Electronic Science and Technology, Chengdu, China
| | - Xin Zhao
- Department of Ultrasound Medicine, School of Medicine, Chengdu Second People’s Hospital, Chengdu, China
| | - Qiuyu Xiao
- School of Medicine, University of Electronic Science and Technology, Chengdu, China
| | - Rui Yang
- School of Medicine, University of Electronic Science and Technology, Chengdu, China
| | - Zizhuo Li
- School of Medicine, Chengdu Medical College, Chengdu, China
| | - Yuanyuan Xie
- School of Medicine, Chengdu Medical College, Chengdu, China
| | - Xinyue Mao
- School of Medicine, North Sichuan Medical College, Nanchong, China
| | - Xi Li
- School of Medicine, North Sichuan Medical College, Nanchong, China
| | - Wenhan Hu
- School of Medicine, North Sichuan Medical College, Nanchong, China
| | - Yan Deng
- Department of Cardiovascular Ultrasound and Cardiac Function, Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People’s Hospital Sichuan Provincial Key Laboratory of Ultrasonic Cardiac Electrophysiology and Biomechanics Sichuan Clinical Medical Research Center for Cardiovascular Disease National Clinical Medical Research Center for Cardiovascular Diseases Branch Center, Chengdu, China
| |
Collapse
|
2
|
Chen X, Qiu F, Wang W, Qi Z, Lyu D, Xue K, Sun L, Song D. Vector flow mapping analysis of left ventricular vortex performance in type 2 diabetic patients with early chronic kidney disease. BMC Cardiovasc Disord 2023; 23:434. [PMID: 37658336 PMCID: PMC10474629 DOI: 10.1186/s12872-023-03474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Diabetes is the leading cause of chronic kidney disease (CKD) and contributes to an elevated incidence of diastolic dysfunction in the early stages of CKD. Intracardiac vortex is a novel hemodynamic index for perceiving cardiac status. Here, we visualized left ventricular (LV) vortex characteristics using vector flow mapping (VFM) in type 2 diabetic patients with early CKD. METHODS This cross-sectional study included 67 controls and 89 type 2 diabetic patients with stages 2-3a CKD. All subjects underwent transthoracic echocardiographic examination. LV anterior vortex during early diastole (E-vortex), atrial contraction (A-vortex) and systole (S-vortex) were assessed using VFM in the apical long-axis view. Its relation to glycemia or LV filling echocardiographic parameters were further analyzed using correlation analysis. RESULTS Type 2 diabetic patients with early CKD had a small area (439.94 ± 132.37 mm2 vs. 381.66 ± 136.85 mm2, P = 0.008) and weak circulation (0.0226 ± 0.0079 m2/s vs. 0.0195 ± 0.0070 m2/s, P = 0.013) of E-vortex, but a large area (281.52 ± 137.27 mm2 vs. 514.83 ± 160.33 mm2, P ˂ 0.001) and intense circulation (0.0149 ± 0.0069 m2/s vs. 0.0250 ± 0.0067 m2/s, P < 0.001) of A-vortex compared to controls. CKD patients with poorly controlled hyperglycemia had stronger A-vortex (area: 479.06 ± 146.78 mm2 vs. 559.96 ± 159.27 mm2, P = 0.015; circulation: 0.0221 ± 0.0058 m2/s vs. 0.0275 ± 0.0064 m2/s, P < 0.001) and S-vortex (area: 524.21 ± 165.52 mm2 vs. 607.87 ± 185.33 mm2, P = 0.029; circulation: 0.0174 ± 0.0072 m2/s vs. 0.0213 ± 0.0074 m2/s, P = 0.015), and a longer relative duration of S-vortex (0.7436 ± 0.0772 vs. 0.7845 ± 0.0752, P = 0.013) than those who had well-controlled hyperglycemia. Glycemia, and E/A (a LV filling parameter) were respectively found to had close correlation to the features of A-vortex and S-vortex (all P < 0.05). CONCLUSIONS Abnormal LV vortices were detected in type 2 diabetic patients with early CKD using VFM, especially in those who neglected hyperglycemic control. LV vortex might be a promising parameter to slow or halt the hyperglycemia-induced diastolic dysfunction in early CKD.
Collapse
Affiliation(s)
- Xiaoxue Chen
- Department of Ultrasound, First Hospital of Qinhuangdao, Hebei Medical University, No.258, Wenhua Road, Qinhuangdao, 066000, Hebei, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio- cerebrovascular Disease, No. 215, Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Fang Qiu
- Department of cardiology, First Hospital of Qinhuangdao, Hebei Medical University, No.258, Wenhua Road, Qinhuangdao, 066000, Hebei, China
| | - Wei Wang
- Department of Cardiac Ultrasound, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Zhengqin Qi
- Department of Ultrasound, First Hospital of Qinhuangdao, Hebei Medical University, No.258, Wenhua Road, Qinhuangdao, 066000, Hebei, China
| | - Damin Lyu
- Department of Ultrasound, First Hospital of Qinhuangdao, Hebei Medical University, No.258, Wenhua Road, Qinhuangdao, 066000, Hebei, China
| | - Kun Xue
- Department of Ultrasound, First Hospital of Qinhuangdao, Hebei Medical University, No.258, Wenhua Road, Qinhuangdao, 066000, Hebei, China
| | - Lijuan Sun
- Department of Ultrasound, First Hospital of Qinhuangdao, Hebei Medical University, No.258, Wenhua Road, Qinhuangdao, 066000, Hebei, China
| | - Degang Song
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio- cerebrovascular Disease, No. 215, Hepingxi Road, Shijiazhuang, 050000, Hebei, China.
- Department of neurology, First Hospital of Qinhuangdao, Hebei Medical University, No.258, Wenhua Road, Qinhuangdao, 066000, Hebei, China.
| |
Collapse
|
3
|
Arakawa Y, Fukaya H, Kakizaki R, Oikawa J, Saito D, Sato T, Matsuura G, Kobayashi S, Shirakawa Y, Nishinarita R, Horiguchi A, Ishizue N, Nabeta T, Kishihara J, Niwano S, Ako J. Energy loss by right ventricular pacing: Patients with versus without hypertrophic cardiomyopathy. J Arrhythm 2021; 37:203-211. [PMID: 33664904 PMCID: PMC7896474 DOI: 10.1002/joa3.12472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/05/2020] [Accepted: 11/14/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Right ventricular (RV) pacing causes left ventricular (LV) dyssynchrony sometimes resulting in pacing-induced cardiomyopathy. However, RV pacing for hypertrophic obstructive cardiomyopathy is one of the treatment options. LV flow energy loss (EL) using vector flow mapping (VFM) is a novel hemodynamic index for assessing cardiac function. Our study aimed to elucidate the impact of RV pacing on EL in normal LV function and hypertrophic cardiomyopathy (HCM) patients. METHODS A total of 36 patients with dual-chamber pacemakers for sick sinus syndrome or implantable cardioverter defibrillators for fatal ventricular tachyarrhythmias were enrolled. All patients were divided into two groups: 16 patients with HCM (HCM group) and others (non-HCM group). The absolute changes in EL under AAI (without RV pacing) and DDD (with RV pacing) modes were assessed using VFM on color Doppler echocardiography. RESULTS In the non-HCM group, the mean systolic EL significantly increased from the AAI to DDD modes (14.0 ± 7.7 to 17.0 ± 8.6 mW/m, P = .003), whereas the mean diastolic EL did not change (19.0 ± 12.3 to 17.0 ± 14.8 mW/m, P = .231). In the HCM group, the mean systolic EL significantly decreased from the AAI to DDD modes (26.7 ± 14.2 to 21.6 ± 11.9 mW/m, P < .001), whereas the mean diastolic EL did not change (28.7 ± 16.4 to 23.9 ± 19.7 mW/m, P = .130). CONCLUSIONS RV pacing increased the mean systolic EL in patients without HCM. Conversely, RV pacing decreased the mean systolic EL in patients with HCM.
Collapse
Affiliation(s)
- Yuki Arakawa
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Hidehira Fukaya
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Ryota Kakizaki
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Jun Oikawa
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Daiki Saito
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Tetsuro Sato
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Gen Matsuura
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Shuhei Kobayashi
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Yuki Shirakawa
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Ryo Nishinarita
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Ai Horiguchi
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Naruya Ishizue
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Takeru Nabeta
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Jun Kishihara
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Shinichi Niwano
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Junya Ako
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| |
Collapse
|
4
|
Zhu X, Xu L, Zuo L, Wang J, Wang B, Hu R, Zhou M, Zhao X, Lei C, Yang Q, Liu L. Quantitative Analysis of Left Ventricular Flow Dynamics in Latent Obstructive Hypertrophic Cardiomyopathy Using Vector Flow Mapping. Cardiology 2020; 145:227-235. [PMID: 32097929 DOI: 10.1159/000504665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/07/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVES This study aimed to assess left ventricular (LV) energy loss (EL), circulation and vortex area using vector flow mapping (VFM) in patients with latent obstructive hyper-trophic cardiomyopathy (LOHCM) and nonobstructive hypertrophic cardiomyopathy (NOHCM). METHODS Fourteen LOHCM patients, 10 NOHCM patients, and 11 healthy individuals were evaluated by transthoracic echocardiography. An offline VFM workstation was used to analyze the LV blood flow patterns and fluid dynamics. The hemodynamic parameters, EL, circulation, and vortex area in 7 cardiac phases were calculated and analyzed. RESULTS Compared with controls and NOHCM patients, EL was significantly higher in -LOHCM patients during the rapid ejection phase, slow ejection (SE) phase, and isovolumetric relaxation phase (p < 0.05). LOHCM patients also showed increased circulation during SE compared to the other two groups (p < 0.05). The ability to discriminate between NOHCM and LOHCM was assessed by the area under the receiver-operating characteristic curve (AUC), and EL during SE was found to have the largest AUC (0.964); the best cutoff value was 6.34 J/m3/s, with a sensitivity of 100% and specificity of 80%. CONCLUSIONS The VFM technique can detect abnormal changes of LV EL and vortex characteristics in hypertrophic cardiomyopathy patients. Compared with controls and NOHCM patients, the LOHCM patients have worse systolic and diastolic functions.
Collapse
Affiliation(s)
- Xiaoli Zhu
- Ultrasound Department of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an, China
| | - Lei Xu
- Ultrasound Department of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an, China
| | - Lei Zuo
- Ultrasound Department of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an, China
| | - Jing Wang
- Ultrasound Department of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an, China
| | - Bo Wang
- Ultrasound Department of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an, China
| | - Rui Hu
- Ultrasound Department of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an, China
| | - Mengyao Zhou
- Ultrasound Department of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an, China
| | - Xueli Zhao
- Ultrasound Department of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an, China
| | - Changhui Lei
- Ultrasound Department of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an, China
| | - Qianli Yang
- Ultrasound Department of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an, China
| | - Liwen Liu
- Ultrasound Department of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an, China,
| |
Collapse
|
5
|
Liu R, Cui C, Li Y, Qiu Z, Hu Y, Wang Y, Cui M, Yin S, Liu L. Analysis of left ventricular diastolic energy loss in patients with aortic stenosis with preserved ejection fraction by using vector flow mapping. Echocardiography 2019; 36:2216-2226. [PMID: 31876982 DOI: 10.1111/echo.14555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ruijie Liu
- Department of Ultrasound Henan Provincial People’s Hospital Heart Center Fuwai Central China Cardiovascular Hospital People’s Hospital of Zhengzhou University Zhengzhou China
| | - Cunying Cui
- Department of Ultrasound Henan Provincial People’s Hospital Heart Center Fuwai Central China Cardiovascular Hospital People’s Hospital of Zhengzhou University Zhengzhou China
| | - Yanan Li
- Department of Ultrasound Henan Provincial People’s Hospital Heart Center Fuwai Central China Cardiovascular Hospital People’s Hospital of Zhengzhou University Zhengzhou China
| | - Zhaoying Qiu
- Department of Ultrasound Henan Provincial People’s Hospital Heart Center Fuwai Central China Cardiovascular Hospital People’s Hospital of Zhengzhou University Zhengzhou China
| | - Yanbin Hu
- Department of Ultrasound Henan Provincial People’s Hospital Heart Center Fuwai Central China Cardiovascular Hospital People’s Hospital of Zhengzhou University Zhengzhou China
| | - Ying Wang
- Department of Ultrasound Henan Provincial People’s Hospital Heart Center Fuwai Central China Cardiovascular Hospital People’s Hospital of Zhengzhou University Zhengzhou China
| | - Mingxia Cui
- Department of Ultrasound Henan Provincial People’s Hospital Heart Center Fuwai Central China Cardiovascular Hospital People’s Hospital of Zhengzhou University Zhengzhou China
| | - Shanshan Yin
- Henan Academy of Medical Sciences Zhengzhou China
| | - Lin Liu
- Department of Ultrasound Henan Provincial People’s Hospital Heart Center Fuwai Central China Cardiovascular Hospital People’s Hospital of Zhengzhou University Zhengzhou China
| |
Collapse
|
6
|
Wang W, Wang Y, Chen X, Yuan L, Bai H. Evaluation of left ventricular diastolic function based on flow energetic parameters in chronic kidney disease with diastolic dysfunction. Echocardiography 2019; 36:567-576. [PMID: 30677176 DOI: 10.1111/echo.14264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022] Open
Affiliation(s)
- Wei Wang
- Department of Cardiac Ultrasound; The Second Hospital of He bei Medical University; Shijiazuhang China
| | - Yueheng Wang
- Department of Cardiac Ultrasound; The Second Hospital of He bei Medical University; Shijiazuhang China
| | - Xiaoxue Chen
- Department of Cardiac Ultrasound; The Second Hospital of He bei Medical University; Shijiazuhang China
| | - Lijun Yuan
- Department of Cardiac Ultrasound; The Second Hospital of He bei Medical University; Shijiazuhang China
| | - Hui Bai
- Department of Cardiac Ultrasound; The Second Hospital of He bei Medical University; Shijiazuhang China
| |
Collapse
|