1
|
Penha Mesquita A, Victor Oliveira Monteiro A, Luiz Araújo Bentes Leal A, Dos Santos Pessoa L, de Siqueira Amorim Júnior J, Rogério Souza Monteiro J, Andrade de Sousa A, Fernando Pereira Vasconcelos D, Carolina Alves de Oliveira A, Leão Pereira A, Rodolfo Pereira da Silva F. Gene variations related to the hepatocellular carcinoma: Results from a field synopsis and Bayesian revaluation. Gene 2023; 869:147392. [PMID: 36966980 DOI: 10.1016/j.gene.2023.147392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 03/21/2023] [Indexed: 04/22/2023]
Abstract
Hepatocellular carcinoma (HCC) is considered as the second cause of cancer-related deaths worldwide. Genetic variations are associated with HCC risk, an issue that has been the subject of several meta-analyses. However, meta-analyses have an important limitation on the likelihood of false positive data. Henceforth, this study aimed to assess the level of noteworthiness in the meta-analyses by means of a Bayesian approach. A systematic search was performed for meta-analyses with associations between gene polymorphisms and HCC. The calculations for the False-Positive Rate Probability (FPRP) and the Bayesian False Discovery Probability (BFDP) were performed to assess the noteworthiness with a statistical power of 1.2 and 1.5 of Odds Ratio at a prior probability of 10-3 and 10-5. The quality of studies was evaluated by the Venice criteria. As additional analyses, the gene-gene and protein-protein networks were designed for these genes and products. As results, we found 33 meta-analytic studies on 45 polymorphisms occurring in 35 genes. A total of 1,280 values for FPRP and BFDP were obtained. Seventy-five for FPRP (5.86%) and 95 for BFDP (14.79%) were noteworthy. In conclusion, the polymorphisms in CCND1, CTLA4, EGF, IL6, IL12A, KIF1B, MDM2, MICA, miR-499, MTHFR, PNPLA3, STAT4, TM6SF2, and XPD genes were considered as noteworthy biomarkers for HCC risk.
Collapse
Affiliation(s)
- Abel Penha Mesquita
- Medicine College, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil
| | | | | | - Larissa Dos Santos Pessoa
- Parnaiba Delta Federal University, Parnaiba, PI, Brazil; Laboratory of Histological Analysis and Preparation (LAPHIs), Parnaiba Delta Federal University, Parnaiba, PI, Brazil
| | | | | | - Aline Andrade de Sousa
- Medicine College, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil
| | - Daniel Fernando Pereira Vasconcelos
- Parnaiba Delta Federal University, Parnaiba, PI, Brazil; Laboratory of Histological Analysis and Preparation (LAPHIs), Parnaiba Delta Federal University, Parnaiba, PI, Brazil
| | | | - Adenilson Leão Pereira
- Medicine College, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil
| | | |
Collapse
|
2
|
Merchant N, Bandaru SS, Alam A, Bhaskar L. The correlation between MDM2 SNP309 T > G polymorphism and hepatocellular carcinoma risk – A meta-analysis. HUMAN GENE 2022; 34:201087. [DOI: 10.1016/j.humgen.2022.201087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
3
|
Ho J, Kim E, Han M, Jung I, Lee J, Jo YS. Impact of Dyslipidemia on the Risk of Second Cancer in Thyroid Cancer Patients: A Korean National Cohort Study. Ann Surg Oncol 2021; 28:4373-4384. [PMID: 33483844 DOI: 10.1245/s10434-020-09570-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/26/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Studies have shown that radioactive iodine therapy (RAIT) affects the development of second cancer in thyroid cancer patients. The impact of other factors, such as dyslipidemia are not clear. METHODS A retrospective analysis of thyroid cancer patients with a 1,251,913 person-year follow-up was conducted using data from the Health Insurance Review and Assessment database in South Korea from January 2008 to December 2018. We investigated factors related to second cancer development using a nested case-control analysis to avoid length bias. RESULTS The overall risk of developing second cancer was higher in thyroid cancer patients than in the general population [standardized incidence ratio, 3.34; 95% confidence interval (CI) 3.30-3.39]. Second cancer incidence was higher in patients who received RAIT than in those who did not [odds ratio (OR) 1.130; 95% CI 1.094-1.169]. Moreover, the risk of second cancer was higher in patients with dyslipidemia than in those without dyslipidemia (OR 1.265; 95% CI 1.223-1.309). After adjustment for RAIT, the incidence of a second cancer was higher in patients with dyslipidemia than in those without dyslipidemia (OR 1.262; 95% CI 1.221-1.306). CONCLUSIONS The risk of second cancer development in patients with thyroid cancer appears to be high. Dyslipidemia may be associated with an increased risk of several types of second cancers.
Collapse
Affiliation(s)
- Joon Ho
- Department of Surgery, Open NBI Convergence Technology Research Laboratory, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunhwa Kim
- Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea
| | - Minkyung Han
- Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea
| | - Inkyung Jung
- Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea.
| | - Jandee Lee
- Department of Surgery, Open NBI Convergence Technology Research Laboratory, Yonsei University College of Medicine, Seoul, South Korea.
| | - Young Suk Jo
- Department of Internal Medicine, Open NBI Convergence Technology Research Laboratory, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
4
|
Rose Li Y, Halliwill KD, Adams CJ, Iyer V, Riva L, Mamunur R, Jen KY, Del Rosario R, Fredlund E, Hirst G, Alexandrov LB, Adams D, Balmain A. Mutational signatures in tumours induced by high and low energy radiation in Trp53 deficient mice. Nat Commun 2020; 11:394. [PMID: 31959748 PMCID: PMC6971050 DOI: 10.1038/s41467-019-14261-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Ionising radiation (IR) is a recognised carcinogen responsible for cancer development in patients previously treated using radiotherapy, and in individuals exposed as a result of accidents at nuclear energy plants. However, the mutational signatures induced by distinct types and doses of radiation are unknown. Here, we analyse the genetic architecture of mammary tumours, lymphomas and sarcomas induced by high (56Fe-ions) or low (gamma) energy radiation in mice carrying Trp53 loss of function alleles. In mammary tumours, high-energy radiation is associated with induction of focal structural variants, leading to genomic instability and Met amplification. Gamma-radiation is linked to large-scale structural variants and a point mutation signature associated with oxidative stress. The genomic architecture of carcinomas, sarcomas and lymphomas arising in the same animals are significantly different. Our study illustrates the complex interactions between radiation quality, germline Trp53 deficiency and tissue/cell of origin in shaping the genomic landscape of IR-induced tumours.
Collapse
Affiliation(s)
- Yun Rose Li
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Kyle D Halliwill
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA
- Abbvie, Redwood City, CA, 94063, USA
| | - Cassandra J Adams
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA
- Nuffield Department of Medicine, University of Oxford, Oxford OX7DQ, UK
| | - Vivek Iyer
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | - Laura Riva
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | - Rashid Mamunur
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | - Kuang-Yu Jen
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Pathology, University of California Davis Medical Center, Sacramento, CA, USA
| | - Reyno Del Rosario
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Erik Fredlund
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA
- Doublestrand Bioinformatics, 11331, Stockholm, Sweden
| | - Gillian Hirst
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine and Department of Bioengineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - David Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK.
| | - Allan Balmain
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA.
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
5
|
Maruei-Milan R, Heidari Z, Salimi S. Role of MDM2 309T>G (rs2279744) and I/D (rs3730485) polymorphisms and haplotypes in risk of papillary thyroid carcinoma, tumor stage, tumor size, and early onset of tumor: A case control study. J Cell Physiol 2018; 234:12934-12940. [PMID: 30548972 DOI: 10.1002/jcp.27960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/19/2018] [Indexed: 01/09/2023]
Abstract
Murine double minute clone 2 (MDM2) protein plays an important role in the regulation of p53 tumor suppressor. Genetic polymorphisms of the MDM2 gene are the candidate variants in susceptibility to various cancers. In the present study, we aimed to investigate the possible effects of MDM2 309T>G (rs2279744) and I/D (rs3730485) polymorphisms on papillary thyroid carcinoma (PTC) susceptibility and clinical or pathological features of the disease. A case control study was carried out involving in a total of 131 patients with PTC and 144 healthy controls. Both cases and controls were genotyped for MDM2 309T>G and I/D polymorphisms. There was no significant difference regarding MDM2 309T>G and I/D genotypes between patients with PTC and controls in neither dominant nor recessive and allelic models. The frequency of G-D haplotype was higher in patients with PTC and this haplotype was associated with a 1.7-fold increased risk of PTC. The MDM2 309T>G polymorphism was associated with a higher risk of III-IV stages in patients with PTC. The MDM2 ID genotype was significantly higher in patients with PTC less than 40 years and associated with larger tumor size (≥1 cm). In conclusion, the G-D haplotype but not MDM2 309T>G and I/D polymorphisms were associated with higher risk of PTC. MDM2 309T>G polymorphism was associated with a higher incidence of III-IV stages, however, I/D polymorphism was associated with larger tumor size and a lower age of disease occurrence.
Collapse
Affiliation(s)
- Rostam Maruei-Milan
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zahra Heidari
- Department of Endocrinology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saeedeh Salimi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
6
|
Abstract
Molecular pathological epidemiology (MPE) is a new discipline which emerged as an integrated approach of molecular pathology and epidemiology and was introduced for the first time by Professor Shuji Ogino and Professor Meir Stampfer in the year of 2010. MPE studies in hepatocellular carcinoma (HCC) investigate the relationship among risk factors, molecular biomarkers, and initiation, progression, and prognosis of HCC, which can be used for exploring the molecular mechanisms of HCC and for the molecular classification of the high risk population. Type 2 diabetes mellitus (DM) has been confirmed as an established risk factor for HCC, and MPE can be helpful to better understand the underlying molecular mechanisms. On December 20, 2017, the first China-Japan Symposium on HCC-MPE was held successfully in Beijing. HCC-MPE provides the opportunities and challenges to solve some problems of HCC, and I believe that it can be helpful to improve the early diagnosis, molecular typing, personalized prevention and treatment, and prognosis of HCC.
Collapse
|
7
|
Karakas C, Wang C, Deng F, Huang H, Wang D, Lee P. Molecular mechanisms involving prostate cancer racial disparity. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2017; 5:34-48. [PMID: 29181436 PMCID: PMC5698597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related deaths in the United States. The African (AA) descent has greater incidence and mortality rates of PCa as compared to Caucasian (CA) men. While socioeconomic differences across racial groups contribute to disparity in PCa, increasing evidence points that genetic and molecular alterations play important roles in racial disparities associated with PCa. In this review, we focus on genetic and molecular influences that contribute to racial disparity between AA and CA men including: androgen and estrogen receptor signaling pathways, growth factors, apoptotic proteins, genetic, genomic and epigenetic alterations. Future translational studies will identify prognostic and predictive biomarkers for AA PCa and assist in the development of new targeted-therapies specifically for AA men with PCa.
Collapse
Affiliation(s)
- Cansu Karakas
- Department of Pathology, New York University School of MedicineNew York, NY, USA
| | - Cassie Wang
- Department of Bioengineering, University of PennsylvaniaPennsylvania, PA, USA
| | - Fangming Deng
- Department of Pathology, New York University School of MedicineNew York, NY, USA
| | - Hongying Huang
- Department of Pathology, New York University School of MedicineNew York, NY, USA
| | - Dongwen Wang
- Department of Urology, First Hospital of Shanxi Medical UniversityTaiyuan, Shanxi, China
| | - Peng Lee
- Department of Pathology, New York University School of MedicineNew York, NY, USA
- Department of Urology, New York University School of MedicineNew York, NY, USA
- Department of New York Harbor Healthcare System, New York University School of MedicineNew York, NY, USA
| |
Collapse
|