1
|
Lv H, Wang Q, Liu F, Jin L, Ren P, Li L. A biochemical feedback signal for hypothermia treatment for neonatal hypoxic-ischemic encephalopathy: focusing on central nervous system proteins in biofluids. Front Pediatr 2024; 12:1288853. [PMID: 38766393 PMCID: PMC11100326 DOI: 10.3389/fped.2024.1288853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
Hypothermia has been widely used to treat moderate to severe neonatal hypoxic-ischemic encephalopathy (HIE), yet evaluating the effects of hypothermia relies on clinical neurology, neuroimaging, amplitude-integrated electroencephalography, and follow-up data on patient outcomes. Biomarkers of brain injury have been considered for estimating the effects of hypothermia. Proteins specific to the central nervous system (CNS) are components of nervous tissue, and once the CNS is damaged, these proteins are released into biofluids (cerebrospinal fluid, blood, urine, tears, saliva), and they can be used as markers of brain damage. Clinical reports have shown that CNS-specific marker proteins (CNSPs) were early expressed in biofluids after brain damage and formed unique biochemical profiles. As a result, these markers may serve as an indicator for screening brain injury in infants, monitoring disease progression, identifying damage region of brain, and assessing the efficacy of neuroprotective measures. In clinical work, we have found that there are few reports on using CNSPs as biological signals in hypothermia for neonatal HIE. The aim of this article is to review the classification, origin, biochemical composition, and physiological function of CNSPs with changes in their expression levels after hypothermia for neonatal HIE. Hopefully, this review will improve the awareness of CNSPs among pediatricians, and encourage future studies exploring the mechanisms behind the effects of hypothermia on these CNSPs, in order to reduce the adverse outcome of neonatal HIE.
Collapse
Affiliation(s)
- Hongyan Lv
- Department of Neonatology, Handan Maternal and Child Health Care Hospital, Handan, Hebei, China
- Department of Neonatal Pathology, Handan Maternal and Child Health Care Hospital, Handan, Hebei, China
| | - Qiuli Wang
- Department of Neonatology, Handan Maternal and Child Health Care Hospital, Handan, Hebei, China
| | - Fang Liu
- Department of Pediatrics, The 980 Hospital of the PLA Joint Logistics Support Force, Shijiazhuang, China
| | - Linhong Jin
- Department of Neonatology, Handan Maternal and Child Health Care Hospital, Handan, Hebei, China
| | - Pengshun Ren
- Department of Neonatology, Handan Maternal and Child Health Care Hospital, Handan, Hebei, China
| | - Lianxiang Li
- Department of Neonatal Pathology, Handan Maternal and Child Health Care Hospital, Handan, Hebei, China
| |
Collapse
|
2
|
Caramelo I, Coelho M, Rosado M, Cardoso CMP, Dinis A, Duarte CB, Grãos M, Manadas B. Biomarkers of hypoxic-ischemic encephalopathy: a systematic review. World J Pediatr 2023; 19:505-548. [PMID: 37084165 PMCID: PMC10199106 DOI: 10.1007/s12519-023-00698-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/31/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Current diagnostic criteria for hypoxic-ischemic encephalopathy in the early hours lack objective measurement tools. Therefore, this systematic review aims to identify putative molecules that can be used in diagnosis in daily clinical practice (PROSPERO ID: CRD42021272610). DATA SOURCES Searches were performed in PubMed, Web of Science, and Science Direct databases until November 2020. English original papers analyzing samples from newborns > 36 weeks that met at least two American College of Obstetricians and Gynecologists diagnostic criteria and/or imaging evidence of cerebral damage were included. Bias was assessed by the Newcastle-Ottawa Scale. The search and data extraction were verified by two authors separately. RESULTS From 373 papers, 30 met the inclusion criteria. Data from samples collected in the first 72 hours were extracted, and increased serum levels of neuron-specific enolase and S100-calcium-binding protein-B were associated with a worse prognosis in newborns that suffered an episode of perinatal asphyxia. In addition, the levels of glial fibrillary acidic protein, ubiquitin carboxyl terminal hydrolase isozyme-L1, glutamic pyruvic transaminase-2, lactate, and glucose were elevated in newborns diagnosed with hypoxic-ischemic encephalopathy. Moreover, pathway analysis revealed insulin-like growth factor signaling and alanine, aspartate and glutamate metabolism to be involved in the early molecular response to insult. CONCLUSIONS Neuron-specific enolase and S100-calcium-binding protein-B are potential biomarkers, since they are correlated with an unfavorable outcome of hypoxic-ischemic encephalopathy newborns. However, more studies are required to determine the sensitivity and specificity of this approach to be validated for clinical practice.
Collapse
Affiliation(s)
- Inês Caramelo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789, Coimbra, Portugal
| | - Margarida Coelho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Chemistry Department, Faculty of Sciences and Technology, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Miguel Rosado
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789, Coimbra, Portugal
| | | | - Alexandra Dinis
- Pediatric Intensive Care Unit, Hospital Pediátrico, Centro Hospitalar E Universitário de Coimbra, 3000-075, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3001-401, Coimbra, Portugal
| | - Mário Grãos
- Biocant, Technology Transfer Association, 3060-197, Cantanhede, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
- Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789, Coimbra, Portugal.
| |
Collapse
|
3
|
Bersani I, Gasparroni G, Bashir M, Aboulgar H, Mufeed H, Iskander I, Kornacka M, Gruzfeld D, Dotta A, Campi F, Longo D, Savarese I, Braguglia A, Tina LG, Nigro F, Serpero L, Strozzi MC, Maconi A, Ianniello P, Di Battista C, D'Adamo E, Gavilanes D, Gazzolo D. Early predictors of abnormal MRI patterns in asphyxiated infants: S100B protein urine levels. Clin Chem Lab Med 2022; 60:1745-1752. [PMID: 35977430 DOI: 10.1515/cclm-2022-0559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/05/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The early detection and stratification of asphyxiated infants at higher risk for impaired neurodevelopment is challenging. S100B protein is a well-established biomarker of brain damage, but lacks conclusive validation according to the "gold standard" methodology for hypoxic-ischemic encephalopathy (HIE) prognostication, i.e. brain MRI. The aim of the present study was to investigate the predictive role of urinary S100B concentrations, assessed in a cohort of HIE infants receiving therapeutic hypothermia (TH), compared to brain MRI. METHODS Assessment of urine S100B concentrations was performed by immunoluminometric assay at first void and at 4, 8, 12, 16, 20, 24, 48, 72, 96, 108 and 120-h after birth. Neurologic evaluation, routine laboratory parameters, amplitude-integrated electroencephalography, and cerebral ultrasound were performed according to standard protocols. Brain MRI was performed at 7-10 days of life. RESULTS Overall, 74 HIE neonates receiving TH were included in the study. S100B correlated, already at first void, with the MRI patterns with higher concentrations in infants with the most severe MRI lesions. CONCLUSIONS High S100B urine levels soon after birth constitute trustable predictors of brain injury as confirmed by MRI. Results support the reliability of S100B in clinical daily practice and open the way to its inclusion in the panel of parameters used for the selection of cases suitable for TH treatment.
Collapse
Affiliation(s)
- Iliana Bersani
- Department of Neonatology, Neonatal Intensive Care Unit, Bambino Gesù; Children's Hospital, Rome, Italy
| | | | - Moataza Bashir
- Department of Neonatology, Cairo University, Cairo, Egypt
| | - Hanna Aboulgar
- Department of Neonatology, Cairo University, Cairo, Egypt
| | - Hala Mufeed
- Department of Neonatology, Cairo University, Cairo, Egypt
| | - Iman Iskander
- Department of Neonatology, Cairo University, Cairo, Egypt
| | - Maria Kornacka
- Department of Neonatology and Intensive Care of Neonate, Warsaw University, Warsaw, Poland
| | - Darek Gruzfeld
- Department of Neonatology and Intensive Care of Neonate, Warsaw University, Warsaw, Poland
| | - Andrea Dotta
- Department of Neonatology, Neonatal Intensive Care Unit, Bambino Gesù; Children's Hospital, Rome, Italy
| | - Francesca Campi
- Department of Neonatology, Neonatal Intensive Care Unit, Bambino Gesù; Children's Hospital, Rome, Italy
| | - Daniela Longo
- Neuroradiology Unit, Department of Imaging, Bambino Gesù; Children's Hospital, Rome, Italy
| | - Immacolata Savarese
- Department of Neonatology, Neonatal Intensive Care Unit, Bambino Gesù; Children's Hospital, Rome, Italy
| | - Annabella Braguglia
- Department of Neonatology, Neonatal Intensive Care Unit, Bambino Gesù; Children's Hospital, Rome, Italy
| | - Lucia Gabriella Tina
- Department of Maternal Fetal and Neonatal Health, G. Garibaldi Hospital, Catania, Italy
| | - Francesco Nigro
- Department of Maternal Fetal and Neonatal Health, G. Garibaldi Hospital, Catania, Italy
| | - Laura Serpero
- Department of Maternal Fetal and Neonatal Medicine C. Arrigo Children's Hospital, Alessandria, Italy
| | - Maria Chiara Strozzi
- Department of Maternal Fetal and Neonatal Medicine C. Arrigo Children's Hospital, Alessandria, Italy
| | - Antonio Maconi
- Department of Maternal Fetal and Neonatal Medicine C. Arrigo Children's Hospital, Alessandria, Italy
| | - Patrizia Ianniello
- Department of Maternal Fetal and Neonatal Medicine C. Arrigo Children's Hospital, Alessandria, Italy
| | | | - Ebe D'Adamo
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| | - Danilo Gavilanes
- Department of Pediatrics and Neonatology, Maastricht University, Maastricht, The Netherlands
| | - Diego Gazzolo
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| |
Collapse
|
4
|
Li M, Ye M, Zhang G. Aberrant expression of miR-199a in newborns with hypoxic-ischemic encephalopathy and its diagnostic and prognostic significance when combined with S100B and NSE. Acta Neurol Belg 2021; 121:707-714. [PMID: 32533551 DOI: 10.1007/s13760-020-01408-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/08/2020] [Indexed: 01/20/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a disorder mainly due to asphyxia during the perinatal period, and late diagnosis leads to high mortality. In this study, the expression of microRNA-199a (miR-199a) in HIE newborns was investigated, as well as its clinical significance in HIE diagnosis and prognosis. Circulating levels of S100B and NSE in HIE newborns were measured using enzyme-linked immunosorbent assay, and the expression of miR-199a was analyzed using quantitative real-time PCR. The diagnostic value of miR-199a, S100B and NSE was evaluated using the receiver operating characteristic (ROC) analysis, and their prognostic value was assessed by the evaluation of Gesell intellectual development of the HIE newborns. HIE newborns possessed significantly increased levels of S100B and NSE and decreased miR-199a (all P < 0.01). The Neonatal Behavioral Neurological Assessment (NBNA) score of HIE newborns was negatively correlated with S100B and NSE, while was positively correlated miR-199a. The ROC analysis results showed the diagnostic value of serum miR-199a, and the combined detection of miR-199a, S100B and NSE could obtained the highest diagnostic accuracy in HIE newborns. miR-199a expression was lowest in newborns with severe HIE, and it had diagnostic potential to distinguish HIE cases with different severity. Regarding the prognosis of neonatal HIE, the correlation of miR-199a, S100B, NSE with Gesell intellectual development was found in HIE newborns. The decreased miR-199a in HIE newborns serves as a potential diagnostic biomarker and may help to improve the diagnostic and prognostic value of S100B and NSE in neonatal HIE.
Collapse
Affiliation(s)
- Min Li
- Department of Neonatology, Women and Children's Health Care Hospital of Linyi, Linyi, 276001, Shandong, China
| | - Mei Ye
- Department of Neonatology, Women and Children's Health Care Hospital of Linyi, Linyi, 276001, Shandong, China
| | - Guangyun Zhang
- Department of Pediatrics, Women and Children's Health Care Hospital of Linyi, No.1, Qinghe South Road, Linyi, 276001, Shandong, China.
| |
Collapse
|
5
|
Gasparroni G, Graziosi A, Bersani I, Caulo M, Moataza B, Aboulgar H, Mufeed H, Iskander I, Kornacka M, Gruzfeld D, Dotta A, Savarese I, Chukhlantseva N, Tina LG, Nigro F, Livolti G, Galvano F, Di Battista C, D'Adamo E, Primavera AP, Lapergola G, Conte M, Salomone R, Perrotta M, Panichi D, Levantini G, Catenaro M, Strozzi C, Maconi A, Centini G, Chiarelli F, D'Antonio F, Gavilanes DAW, Gazzolo D. S100B protein, cerebral ultrasound and magnetic resonance imaging patterns in brain injured preterm infants. Clin Chem Lab Med 2021; 59:1527-1534. [PMID: 34008376 DOI: 10.1515/cclm-2021-0278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/26/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The early detection of preterm infants (PI) at risk for intraventricular hemorrhage (IVH) and neurological sequelae still constitutes an unsolved issue. We aimed at validating the role of S100B protein in the early diagnosis and prognosis of IVH in PI by means of cerebral ultrasound (CUS) and magnetic resonance imaging (MRI) today considered standard of care procedures. METHODS We conducted an observational case-control study in 216 PI of whom 36 with IVH and 180 controls. Standard clinical, laboratory, radiological monitoring procedures and S100B urine measurement were performed at four time-points (first void, 24, 48, 96 h) after birth. Cerebral MRI was performed at 40-42 weeks of corrected gestational age. RESULTS Elevated (p<0.001, for all) S100B levels were observed in the IVH group at all monitoring time-point particularly at first void when standard monitoring procedures were still silent or unavailable. S100B measured at first void correlated (p<0.001) with the grade of hemorrhage by means of CUS and with the site and extension of neurological lesion (p<0.001, for all) as assessed by MRI. CONCLUSIONS The present results showing a correlation among S100B and CUS and MRI offer additional support to the inclusion of the protein in clinical daily management of cases at risk for IVH and adverse neurological outcome. The findings open the way to further investigations in PI aimed at validating new neurobiomarkers by means of S100B.
Collapse
Affiliation(s)
| | | | - Iliana Bersani
- Department of Neonatology, Neonatal Intensive Care Unit, Bambino Gesù; Children's Hospital, Rome, Italy
| | - Massimo Caulo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Bashir Moataza
- Department of Neonatology, Cairo University, Cairo, Egypt
| | - Hanna Aboulgar
- Department of Neonatology, Cairo University, Cairo, Egypt
| | - Hala Mufeed
- Department of Neonatology, Cairo University, Cairo, Egypt
| | - Iman Iskander
- Department of Neonatology, Cairo University, Cairo, Egypt
| | - Maria Kornacka
- Department of Neonatology and Intensive Care of Neonate, Warsaw University, Warsaw, Poland
| | - Darek Gruzfeld
- Department of Neonatology and Intensive Care of Neonate, Warsaw University, Warsaw, Poland
| | - Andrea Dotta
- Department of Neonatology, Neonatal Intensive Care Unit, Bambino Gesù; Children's Hospital, Rome, Italy
| | - Immacolata Savarese
- Department of Neonatology, Neonatal Intensive Care Unit, Bambino Gesù; Children's Hospital, Rome, Italy
| | - Natalia Chukhlantseva
- Department of Neonatology, Neonatal Intensive Care Unit, Bambino Gesù; Children's Hospital, Rome, Italy
| | - Lucia Gabriella Tina
- Department of Maternal Fetal and Neonatal Health, G. Garibaldi Hospital, Catania, Italy
| | - Francesco Nigro
- Department of Maternal Fetal and Neonatal Health, G. Garibaldi Hospital, Catania, Italy
| | | | - Fabio Galvano
- Department of Biochemistry, Catania University, Catania, Italy
| | | | - Ebe D'Adamo
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| | | | | | - Mariangela Conte
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| | - Rita Salomone
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| | - Marika Perrotta
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| | - Daniele Panichi
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| | | | - Milena Catenaro
- Department of Pediatrics, G. d'Annunzio University, Chieti, Italy
| | - Chiara Strozzi
- Department of Maternal, Fetal and Neonatal Medicine, ASO SS Antonio, Biagio and C. Arrigo, Alessandria, Italy
| | - Antonio Maconi
- Department of Maternal, Fetal and Neonatal Medicine, ASO SS Antonio, Biagio and C. Arrigo, Alessandria, Italy
| | - Giacomo Centini
- Department of Maternal, Fetal and Neonatal Medicine, ASO SS Antonio, Biagio and C. Arrigo, Alessandria, Italy
| | | | - Francesco D'Antonio
- Department of Obstetrics and Gynecology, Centre for Fetal Care and High Risk Pregnancy, University G. d'Annunzio, Chieti, Italy
| | - Danilo A W Gavilanes
- Department of Pediatrics and Neonatology, Maastricht University, Maastricht, The Netherlands
| | - Diego Gazzolo
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| |
Collapse
|
6
|
Yang T, Li S. Efficacy of different treatment times of mild cerebral hypothermia on oxidative factors and neuroprotective effects in neonatal patients with moderate/severe hypoxic-ischemic encephalopathy. J Int Med Res 2021; 48:300060520943770. [PMID: 32938280 PMCID: PMC7503019 DOI: 10.1177/0300060520943770] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objective To investigate the efficacy of different treatment times of mild cerebral hypothermia for treating moderate/severe hypoxic–ischemic encephalopathy (HIE) in neonatal patients and its effects on oxidative factors. Methods This prospective, randomized, controlled study included 92 neonatal patients with moderate/severe HIE and 30 controls. The patients with HIE received routine treatment, 48 hours of hypothermia, or 72 hours of hypothermia. Results Superoxide dismutase (SOD) values were significantly lower and malondialdehyde (MDA) and neuron-specific enolase (NSE) values were higher in patients with HIE than in controls before the study. After 24, 48, and 72 hours of treatment, SOD values in all patients with HIE gradually increased and MDA and NSE values gradually decreased. At 3, 7, and 10 days, the Neonatal Behavioral Neurological Assessment scores were highest in the mild hypothermia for 72 hours group than in the other groups. The Mental and Psychomotor Development Indices scores of the Bayley Scales were significantly higher in the mild hypothermia for 72 hours group than in the other groups. Conclusion Hypothermia treatment of 72 hours is better than 48 hours for improving oxidative conditions, reducing NSE values, and improving neurological behavior and development for neonates with moderate/severe HIE.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Neonatology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Shan Li
- Department of Neonatology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| |
Collapse
|
7
|
Efstathiou N, Slavakis A, Drossou V, Kantziou K, Dermetzoglou V, Soubasi V. Can we delineate brain injury in full-term neonates using serum biomarkers? Brain Inj 2021; 35:821-830. [PMID: 33780304 DOI: 10.1080/02699052.2021.1907862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE: Early identification of neonates at risk of neurological impairment is particularly important for the bedside clinician. Clinical value of S100b and neuron-specific enolase in neonates has not been yet established. We investigated their kinetics and possible early clinical utility in neonatal encephalopathy (NE).STUDY DESIGN: 36 full-term neonates (13 with moderate/severe encephalopathy, 11 with mild encephalopathy, 12 controls) were enrolled and studied prospectively. Serum S100b and neuron-specific enolase (NSE) were measured serially on days(d) 1, 3, 9 and 18 of life. Brain MRI and long-term neurodevelopmental outcome were also assessed.RESULT: Neonates with moderate/severe encephalopathy had significantly increased S100b (d1) and NSE levels (d1, d3, d9) compared to controls. Neuron-specific enolase significantly correlated with the degree of encephalopathy, and a cutoff of 38.8 μg/l (d1) accurately predicted moderate/severe encephalopathy. S100b (d1) cutoff points of 1.6 μg/l and 11.4 μg/l prognosticated severe encephalopathy and death/cerebral palsy, respectively. Both biomarkers correlated well with neuroimaging and Bayley-III scores.CONCLUSION: Combined clinical, laboratory, imaging and neurodevelopmental data indicate that serum S100b and NSE can be useful biomarkers for the diagnosis and prognosis of neonatal brain injury, providing useful information to the bedside clinician.
Collapse
Affiliation(s)
- Nikolaos Efstathiou
- 1st Neonatal Department and NICU, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aristidis Slavakis
- Biochemistry Department, Hippokration General Hospital, Thessaloniki, Greece
| | - Vasiliki Drossou
- 1st Neonatal Department and NICU, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina Kantziou
- 1st Neonatal Department and NICU, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Vasiliki Soubasi
- 2nd Neonatal Department and NICU, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
8
|
Lingam I, Avdic-Belltheus A, Meehan C, Martinello K, Ragab S, Peebles D, Barkhuizen M, Tann CJ, Tachtsidis I, Wolfs TGAM, Hagberg H, Klein N, Fleiss B, Gressens P, Golay X, Kramer BW, Robertson NJ. Serial blood cytokine and chemokine mRNA and microRNA over 48 h are insult specific in a piglet model of inflammation-sensitized hypoxia-ischaemia. Pediatr Res 2021; 89:464-475. [PMID: 32521540 DOI: 10.1038/s41390-020-0986-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Exposure to inflammation exacerbates injury in neonatal encephalopathy (NE). We hypothesized that brain biomarker mRNA, cytokine mRNA and microRNA differentiate inflammation (E. coli LPS), hypoxia (Hypoxia), and inflammation-sensitized hypoxia (LPS+Hypoxia) in an NE piglet model. METHODS Sixteen piglets were randomized: (i) LPS 2 μg/kg bolus; 1 μg/kg infusion (LPS; n = 5), (ii) Saline with hypoxia (Hypoxia; n = 6), (iii) LPS commencing 4 h pre-hypoxia (LPS+Hypoxia; n = 5). Total RNA was acquired at baseline, 4 h after LPS and 1, 3, 6, 12, 24, 48 h post-insult (animals euthanized at 48 h). Quantitative PCR was performed for cytokines (IL1A, IL6, CXCL8, IL10, TNFA) and brain biomarkers (ENO2, UCHL1, S100B, GFAP, CRP, BDNF, MAPT). MicroRNA was detected using GeneChip (Affymetrix) microarrays. Fold changes from baseline were compared between groups and correlated with cell death (TUNEL) at 48 h. RESULTS Within 6 h post-insult, we observed increased IL1A, CXCL8, CCL2 and ENO2 mRNA in LPS+Hypoxia and LPS compared to Hypoxia. IL10 mRNA differentiated all groups. Four microRNAs differentiated LPS+Hypoxia and Hypoxia: hsa-miR-23a, 27a, 31-5p, 193-5p. Cell death correlated with TNFA (R = 0.69; p < 0.01) at 1-3 h and ENO2 (R = -0.69; p = 0.01) at 48 h. CONCLUSIONS mRNA and miRNA differentiated hypoxia from inflammation-sensitized hypoxia within 6 h in a piglet model. This information may inform human studies to enable triage for tailored neuroprotection in NE. IMPACT Early stratification of infants with neonatal encephalopathy is key to providing tailored neuroprotection. IL1A, CXCL8, IL10, CCL2 and NSE mRNA are promising biomarkers of inflammation-sensitized hypoxia. IL10 mRNA levels differentiated all three pathological states; fold changes from baseline was the highest in LPS+Hypoxia animals, followed by LPS and Hypoxia at 6 h. miR-23, -27, -31-5p and -193-5p were significantly upregulated within 6 h of a hypoxia insult. Functional analysis highlighted the diverse roles of miRNA in cellular processes.
Collapse
Affiliation(s)
- Ingran Lingam
- Neonatology, Institute for Women's Health, University College London, London, UK
| | | | - Christopher Meehan
- Neonatology, Institute for Women's Health, University College London, London, UK
| | - Kathryn Martinello
- Neonatology, Institute for Women's Health, University College London, London, UK.,Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Sara Ragab
- Neonatology, Institute for Women's Health, University College London, London, UK
| | - Donald Peebles
- Maternal Fetal Medicine, Institute for Women's Health, University College London, London, UK
| | - Melinda Barkhuizen
- Department of Pediatrics, University of Maastricht, Maastricht, The Netherlands
| | - Cally J Tann
- Neonatology, Institute for Women's Health, University College London, London, UK.,Maternal Adolescent, Reproductive and Child Health (MARCH) Centre, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Ilias Tachtsidis
- Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Tim G A M Wolfs
- Department of Pediatrics, University of Maastricht, Maastricht, The Netherlands
| | - Henrik Hagberg
- Centre of Perinatal Medicine & Health, Department of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Nigel Klein
- Paediatric Infectious Diseases & Immunology, Institute of Child Health, University College London, London, UK
| | - Bobbi Fleiss
- Centre for the Developing Brain, Kings College London, London, UK
| | - Pierre Gressens
- Centre for the Developing Brain, Kings College London, London, UK.,PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, 75019, Paris, France
| | - Xavier Golay
- Department of Brain Repair & Rehabilitation, Institute of Neurology, University College London, London, UK
| | - Boris W Kramer
- Maternal Fetal Medicine, Institute for Women's Health, University College London, London, UK
| | - Nicola J Robertson
- Neonatology, Institute for Women's Health, University College London, London, UK.
| |
Collapse
|
9
|
Catherine RC, Bhat BV, Adhisivam B, Bharadwaj SK, Vinayagam V, Chinnakali P. Neuronal Biomarkers in Predicting Neurodevelopmental Outcome in Term Babies with Perinatal Asphyxia. Indian J Pediatr 2020; 87:787-792. [PMID: 32415664 DOI: 10.1007/s12098-020-03283-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 03/30/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To assess whether serum levels of neuronal biomarkers (S100 calcium-binding protein B and Neuron specific enolase) correlate with the neurodevelopmental outcome of term neonates at 18 mo who had hypoxic ischemic encephalopathy and underwent therapeutic hypothermia. METHODS This randomized controlled trial was conducted in a tertiary care teaching hospital, south India. There were 162 term infants with moderate to severe hypoxic ischemic encephalopathy who were randomized into 2 groups (Group A and B). Neonates in Group A and B received normothermia and therapeutic hypothermia respectively. Serum levels of neuronal biomarkers were estimated at 0, 24 (±1) and 72 (±1) h after birth using sandwich ELISA in both groups. All neonates were carefully monitored till discharge. Infants who survived the neonatal period were followed up in the high risk clinic for 18 mo and neurodevelopmental assessment was done using Developmental Assessment Scale for Indian Infants (DASII). Neurodevelopmental outcomes between the two groups were compared using Chi square test and neuronal biomarker levels between the groups were compared using Mann Whitney test. RESULTS The baseline maternal and neonatal characteristics in both groups were comparable. There was statistically insignificant lesser mortality in therapeutic hypothermia group compared to normothermia group with Risk Ratio (RR): 0.82 (28.2% vs. 34.5%, 95% CI: 0.52-1.29, p = 0.38). Among the survivors, children in therapeutic hypothermia group had better motor and mental scores compared to those in normothermia group at 18 mo. There was no significant correlation between S100B and Neuron specific enolase levels and neurodevelopmental outcome. CONCLUSIONS Serum levels of neuronal biomarkers (S100B and Neuron specific enolase) do not correlate with the long term neurodevelopmental outcome among these infants.
Collapse
Affiliation(s)
- R Christina Catherine
- Department of Neonatology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, 605006, India
| | - B Vishnu Bhat
- Department of Neonatology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, 605006, India. .,Department of Pediatrics and Neonatology, AVMC, Kirumampakkam, Puducherry, 607402, India.
| | - B Adhisivam
- Department of Neonatology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, 605006, India
| | - Shruthi K Bharadwaj
- Department of Neonatology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, 605006, India
| | - Vickneshwaran Vinayagam
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Palanivel Chinnakali
- Department of Preventive & Social Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
10
|
Menéndez-Valladares P, Sola-Idígora N, Fuerte-Hortigón A, Alonso-Pérez I, Duque-Sánchez C, Domínguez-Mayoral AM, Ybot-González P, Montaner J. Lessons learned from proteome analysis of perinatal neurovascular pathologies. Expert Rev Proteomics 2020; 17:469-481. [PMID: 32877618 DOI: 10.1080/14789450.2020.1807335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Perinatal and pediatric diseases related to neurovascular disorders cause significant problems during life, affecting a population with a long life expectancy. Early diagnosis and assessment of the severity of these diseases are crucial to establish an appropriate neuroprotective treatment. Currently, physical examination, neuroimaging and clinical judgment are the main tools for diagnosis, although these tests have certain limitations. There is growing interest in the potential value of noninvasive biomarkers that can be used to monitor child patients at risk of brain damage, allowing accurate, and reproducible measurements. AREAS COVERED This review describes potential biomarkers for the diagnosis of perinatal neurovascular diseases and discusses the possibilities they open for the classification and treatment of neonatal neurovascular diseases. EXPERT OPINION Although high rates of ischemic and hemorrhagic stroke exist in pediatric populations, most studies have focused on biomarkers of hypoxic-ischemic encephalopathy. Inflammatory and neuronal biomarkers such as S-100B and GFAP, in combination with others yet to be discovered, could be considered as part of multiplex panels to diagnose these diseases and potentially for monitoring response to treatments. Ideally, noninvasive biofluids would be the best source for evaluating these biomarkers in proteomic assays in perinatal patients.
Collapse
Affiliation(s)
| | - Noelia Sola-Idígora
- Neurodevelopment Group, Hospital Universitario Virgen Del Rocio/IBIS/CSIC/US , Sevilla, Spain
| | | | - Irene Alonso-Pérez
- Neuropediatric Unit, Hospital Universitario Virgen De Macarena , Sevilla, Spain
| | | | | | - Patricia Ybot-González
- Neurology Unit, Hospital Universitario Virgen De Macarena , Sevilla, Spain.,Neurodevelopment Group, Hospital Universitario Virgen Del Rocio/IBIS/CSIC/US , Sevilla, Spain
| | - Joan Montaner
- Neurology Unit, Hospital Universitario Virgen De Macarena , Sevilla, Spain.,The Neurovascular Research Lab, IBIS/HUVR/CSIC/US , Sevilla, Spain
| |
Collapse
|
11
|
Wang Z, Mascarenhas C, Jia X. Positron Emission Tomography After Ischemic Brain Injury: Current Challenges and Future Developments. Transl Stroke Res 2020; 11:628-642. [PMID: 31939060 PMCID: PMC7347441 DOI: 10.1007/s12975-019-00765-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/22/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022]
Abstract
Positron emission tomography (PET) is widely used in clinical and animal studies, along with the development of diverse tracers. The biochemical characteristics of PET tracers may help uncover the pathophysiological consequences of cardiac arrest (CA) and ischemic stroke, which include cerebral ischemia and reperfusion, depletion of oxygen and glucose, and neuroinflammation. PubMed was searched for studies of the application of PET for "cardiac arrest," "ischemic stroke," and "targeted temperature management." Available studies were included and classified according to the biochemical properties involved and metabolic processes of PET tracers, and were summarized. The mechanisms of ischemic brain injuries were investigated by PET with various tracers to elucidate the pathological process from the initial decrease of cerebral blood flow (CBF) to the subsequent abnormalities in energy and oxygen metabolism, to the monitoring of inflammation. In general, the trends of cerebral blood flow and oxygen metabolism after ischemic attack are not unidirectional but closely related to the time point of injury and recovery. Glucose metabolism after injury showed significant differences in different brain regions whereas global cerebral metabolic rate of glucose (CMRglc) declined. PET monitoring of neuroinflammation shows comparable efficacy to immunostaining. The technology of PET targeting in brain metabolism and the development of tracers provide new tools to track and evaluate the brain's pathological changes after ischemic brain injury. Despite no existing evidence for an available PET-based prediction method, discoveries of new tracers are expected to provide more possibilities for the whole field.
Collapse
Affiliation(s)
- Zhuoran Wang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 43007, China
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Conrad Mascarenhas
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA.
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
12
|
Bersani I, Pluchinotta F, Dotta A, Savarese I, Campi F, Auriti C, Chuklantseva N, Piersigilli F, Gazzolo F, Varrica A, Satriano A, Gazzolo D. Early predictors of perinatal brain damage: the role of neurobiomarkers. Clin Chem Lab Med 2020; 58:471-486. [PMID: 31851609 DOI: 10.1515/cclm-2019-0725] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/31/2019] [Indexed: 09/17/2023]
Abstract
The early detection of perinatal brain damage in preterm and term newborns (i.e. intraventricular hemorrhage, periventricular leukomalacia and perinatal asphyxia) still constitute an unsolved issue. To date, despite technological improvement in standard perinatal monitoring procedures, decreasing the incidence of perinatal mortality, the perinatal morbidity pattern has a flat trend. Against this background, the measurement of brain constituents could be particularly useful in the early detection of cases at risk for short-/long-term brain injury. On this scenario, the main European and US international health-care institutions promoted perinatal clinical and experimental neuroprotection research projects aimed at validating and including a panel of biomarkers in the clinical guidelines. Although this is a promising attempt, there are several limitations that do not allow biomarkers to be included in standard monitoring procedures. The main limitations are: (i) the heterogeneity of neurological complications in the perinatal period, (ii) the small cohort sizes, (iii) the lack of multicenter investigations, (iv) the different techniques for neurobiomarkers assessment, (iv) the lack of consensus for the validation of assays in biological fluids such as urine and saliva, and (v), the lack of reference curves according to measurement technique and biological fluid. In the present review we offer an up-to-date overview of the most promising developments in the use of biomarkers in the perinatal period such as calcium binding proteins (S100B protein), vasoactive agents (adrenomedullin), brain biomarkers (activin A, neuron specific enolase, glial fibrillary acidic protein, ubiquitin carboxyl-terminal hydrolase-L1) and oxidative stress markers.
Collapse
Affiliation(s)
- Iliana Bersani
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Pluchinotta
- Laboratory Research Department of Pediatric Cardiovascular Surgery, SanDonato Milanese Univerity Hospital, San Donato Milanese, Milan, Italy
| | - Andrea Dotta
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Immacolata Savarese
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Campi
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cinzia Auriti
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Natalia Chuklantseva
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fiammetta Piersigilli
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Alessandro Varrica
- Laboratory Research Department of Pediatric Cardiovascular Surgery, SanDonato Milanese Univerity Hospital, San Donato Milanese, Milan, Italy
| | - Angela Satriano
- Laboratory Research Department of Pediatric Cardiovascular Surgery, SanDonato Milanese Univerity Hospital, San Donato Milanese, Milan, Italy
| | - Diego Gazzolo
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
- Neonatal Intesive Care Unit, AO S.S. Antonio, Biagio, C. Arrigo Hospital, Spalto Marengo 46, 15100 Alessandria, Italy
| |
Collapse
|
13
|
Bersani I, Ferrari F, Lugli L, Ivani G, Conio A, Moataza B, Aboulgar H, Mufeed H, Iskander I, Kornacka M, Gruzfeld D, Dotta A, Savarese I, Chukhlantseva N, Tina LG, Nigro F, Livolti G, Galvano F, Serpero L, Colivicchi M, Ianniello P, Pluchinotta F, Anastasia L, Baryshnikova E, Gazzolo D. Monitoring the effectiveness of hypothermia in perinatal asphyxia infants by urinary S100B levels. Clin Chem Lab Med 2020; 57:1017-1025. [PMID: 30753152 DOI: 10.1515/cclm-2018-1094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/18/2019] [Indexed: 01/09/2023]
Abstract
Background Perinatal asphyxia is a major cause of mortality and morbidity in neonates: The aim of the present study was to investigate, by means of longitudinal assessment of urinary S100B, the effectiveness of hypothermia, in infants complicated by perinatal asphyxia and hypoxic-ischemic encephalopathy. Methods We performed a retrospective case-control study in 108 asphyxiated infants, admitted to nine tertiary departments for neonatal intensive care from January 2004 to July 2017, of whom 54 underwent hypothermia treatment and 54 did not. The concentrations of S100B protein in urine were measured using an immunoluminometric assay at first urination and 4, 8, 12, 16, 20, 24, 48, 72, 96, 108 and 120 h after birth. The results were correlated with the achievement of S100B levels within normal ranges at 72 h from hypothermia treatment. Routine laboratory parameters, longitudinal cerebral function monitoring, cerebral ultrasound and neurologic patterns were assessed according to standard protocols. Results Higher S100B concentrations were found in hypothermia-treated infants in both moderate (up to 12 h) and severe (up to 24 h) hypoxic-ischemic encephalopathy. S100B levels returned to normal ranges starting from 20 h of hypothermia treatment in moderate and from 36 h in severe hypoxic-ischemic encephalopathy. Conclusions The present results offer additional support to the usefulness of longitudinal neuro-biomarkers monitoring in asphyxiated infants treated by hypothermia. The pattern of S100B concentrations during hypothermia supports the need for further investigations aimed at reconsidering the time-window for patient recruitment and treatment, and the optimal duration of the cooling and rewarming phases of the hypothermia procedure.
Collapse
Affiliation(s)
- Iliana Bersani
- Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Fabrizio Ferrari
- Division of Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Licia Lugli
- Division of Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Giorgio Ivani
- Pediatric Intensive Care Unit, Regina Margherita Children's Hospital, Turin, Italy
| | - Alessandra Conio
- Pediatric Intensive Care Unit, Regina Margherita Children's Hospital, Turin, Italy
| | - Bashir Moataza
- Department of Neonatology, Cairo University, Cairo, Egypt
| | - Hanna Aboulgar
- Department of Neonatology, Cairo University, Cairo, Egypt
| | - Hala Mufeed
- Department of Neonatology, Cairo University, Cairo, Egypt
| | - Iman Iskander
- Department of Neonatology, Cairo University, Cairo, Egypt
| | - Maria Kornacka
- Department of Neonatology and Intensive Care of Neonate, Warsaw University, Warsaw, Poland
| | - Darek Gruzfeld
- Department of Neonatology and Intensive Care of Neonate, Warsaw University, Warsaw, Poland
| | - Andrea Dotta
- Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Immacolata Savarese
- Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Natalia Chukhlantseva
- Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Lucia Gabriella Tina
- Department of Maternal Fetal and Neonatal Health G. Garibaldi Hospital, Catania, Italy
| | - Francesco Nigro
- Department of Maternal Fetal and Neonatal Health G. Garibaldi Hospital, Catania, Italy
| | | | - Fabio Galvano
- Department of Biochemistry, Catania University, Catania, Italy
| | - Laura Serpero
- Department of Maternal, Fetal and Neonatal Medicine, C. Arrigo Children's Hospital, Alessandria, Italy
| | - Micaela Colivicchi
- Department of Maternal, Fetal and Neonatal Medicine, C. Arrigo Children's Hospital, Alessandria, Italy
| | - Patrizia Ianniello
- Department of Maternal, Fetal and Neonatal Medicine, C. Arrigo Children's Hospital, Alessandria, Italy
| | - Francesca Pluchinotta
- Department of Cardiology and Laboratory Research, S. Donato Milanese University Hospital, Milan, Italy
| | - Luigi Anastasia
- Department of Cardiology and Laboratory Research, S. Donato Milanese University Hospital, Milan, Italy
| | - Ekaterina Baryshnikova
- Department of Cardiology and Laboratory Research, S. Donato Milanese University Hospital, Milan, Italy
| | - Diego Gazzolo
- Department of Maternal, Fetal and Neonatal Medicine, C. Arrigo Children's Hospital, Alessandria, Italy.,Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| | | |
Collapse
|
14
|
Auriti C, Prencipe G, Inglese R, Moriondo M, Nieddu F, Mondì V, Longo D, Bucci S, Del Pinto T, Timelli L, Di Ciommo VM. Mannose Binding Lectin, S100 B Protein, and Brain Injuries in Neonates With Perinatal Asphyxia. Front Pediatr 2020; 8:527. [PMID: 33042903 PMCID: PMC7527601 DOI: 10.3389/fped.2020.00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/24/2020] [Indexed: 11/13/2022] Open
Abstract
Perinatal asphyxia triggers an acute inflammatory response in the injured brain. Complement activation and neuroinflammation worsen brain damage after a systemic ischemia/reperfusion insult. The increase of mannose binding lectin (MBL) during asphyxia may contribute to the brain damage, via activation of the complement lectin pathway. The possible role of MBL2 gene variants in influencing the severity of post-asphyxia brain injuries is still unexplored. This retrospective study included 53 asphyxiated neonates: 42 underwent therapeutic hypothermia (TH) and 11 did not because they were admitted to the NICU later than 6 h after the hypoxic insult. Blood samples from TH-treated and untreated patients were genotyped for MBL2 gene variants, and biomarker plasma levels (MBL and S100 B protein) were measured at different time points: during hypothermia, during rewarming, and at 7-10 days of life. The timing of blood sampling, except for the T1 sample, was the same in untreated infants. Highest (peak) levels of MBL and MBL2 genotypes were correlated to neuroimaging brain damage or death and long-term neurodevelopmental delay. MBL2 wild-type genotype was associated with the highest MBL levels and worst brain damage on MRI (p = 0.046) at 7-10 days after hypoxia. MBL increased in both groups and S100B decreased, slightly more in treated than in untreated neonates. The progressive increase of MBL (p = 0.08) and to be untreated with TH (p = 0.08) increased the risk of brain damage or death at 7-10 days of life, without affecting neurodevelopmental outcomes at 1 year. The effect of TH on MBL plasma profiles is uncertain.
Collapse
Affiliation(s)
- Cinzia Auriti
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giusi Prencipe
- Laboratory of Rheumatology Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rita Inglese
- Laboratory of Chemical Chemistry, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Moriondo
- Laboratory of Immunology, Department of Pediatrics, Anna Meyer Children's University Hospital, Florence, Italy
| | - Francesco Nieddu
- Laboratory of Immunology, Department of Pediatrics, Anna Meyer Children's University Hospital, Florence, Italy
| | - Vito Mondì
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Neonatology and Neonatal Intensive Care Unit, Policlinico Casilino Hospital, Rome, Italy
| | - Daniela Longo
- Neuroimaging Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Bucci
- Clinical Psychology Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Tamara Del Pinto
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Laura Timelli
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | |
Collapse
|
15
|
Heizmann CW. S100 proteins: Diagnostic and prognostic biomarkers in laboratory medicine. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1197-1206. [DOI: 10.1016/j.bbamcr.2018.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/12/2018] [Indexed: 01/04/2023]
|
16
|
Enteroviral meningitis reduces CSF concentration of Aβ42, but does not affect markers of parenchymal damage. Eur J Clin Microbiol Infect Dis 2019; 38:1443-1447. [PMID: 31093802 PMCID: PMC6647500 DOI: 10.1007/s10096-019-03569-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/23/2019] [Indexed: 01/01/2023]
Abstract
Biomarkers classically studied in Alzheimer’s disease have been analyzed in numerous central nervous system infections in adults, but there are scarce data on these biomarkers in children. Enteroviruses appear to be the most common cause of aseptic meningitis throughout the world. The aim of the study was to investigate neuroinflammatory properties of non-polio enteroviruses by measuring CSF concentrations of biomarkers that are involved in neuropathological pathways of neurodegenerative disorders. We measured Aβ42, t-tau, and S100B concentrations in 42 children with enteroviral meningitis (EM) compared to control group without central nervous system infection. We found enteroviral meningitis (EM) to reduce CSF concentration of Aβ42 (median, 1051.1 pg/mL; interquartile range (IQR), 737.6–1559.5 vs. median, 459.4 pg/mL; IQR, 312.0–662.0, p < 0.001). In contrast, CSF concentrations of t-tau and S100B were not affected by EM. There was a correlation between total neutrophil count in CSF and Aβ42 (R = − 0.59, p < 0.001). Absolute number of mononuclear cells in the CSF correlated with CSF t-tau (R = 0.41, p < 0.05). Both correlations remained significant after adjustment for age, blood leukocytes, serum CRP, CSF leukocytes, and CSF protein concentration.
Collapse
|
17
|
López-Suárez O, Concheiro-Guisán A, Sánchez-Pintos P, Cocho JA, Fernández Lorenzo JR, Couce ML. Acylcarnitine profile in neonatal hypoxic-ischemic encephalopathy: The value of butyrylcarnitine as a prognostic marker. Medicine (Baltimore) 2019; 98:e15221. [PMID: 30985723 PMCID: PMC6485840 DOI: 10.1097/md.0000000000015221] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 03/01/2019] [Accepted: 03/20/2019] [Indexed: 11/26/2022] Open
Abstract
Optimal prognostic markers evaluating early neuroprotective interventions in neonatal hypoxic-ischemic encephalopathy (HIE) are lacking. This study was designed to assess the prognostic value of acylcarnitines in neonatal HIE.An observational cohort study was conducted over 10 years in 67 HIE. Variables analyzed included sex, blood cord pH, Apgar score, hypothermia treatment (yes/no), neuron-specific enolase (NSE) levels, and clinical outcome (neurological examination, brain magnetic resonance imaging [MRI], and electroencephalogram) before discharge and at 6 months. Acylcarnitine profiles were analyzed by tandem-mass spectrometry on dried-blood spots collected on day 3 for newborn screening. A cohort of healthy newborns was used as control group.HIE patients had significantly increased C4, C5, C5:1, C6, C6-OH, C8 levels (all P < .01) and decreased long-chain acylcarnitine levels (P < .03). Hypothermia treatment was associated with a decrease in C4 levels (p = 0.005) and an increase in most long-chain acylcarnitine levels (P < .01). A significant association was found between C4 levels and NSE on day 1 of hypothermia treatment (P = .002) and abnormal brain magnetic resonance imaging (MRI) at discharge (P = .037). In the hypothermia group, C4 levels decreased in patients with favorable outcomes but remained high in those who progressed unfavorably.C4 appears to be a good prognostic marker in HIE, as blood levels correlated with NSE levels and abnormal MRI findings. Furthermore, hypothermia did not lead to decreased levels in patients with adverse outcomes.
Collapse
Affiliation(s)
- Olalla López-Suárez
- Neonatal Unit, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela
| | - Ana Concheiro-Guisán
- Neonatal Unit, Pediatric Service, Hospital Alvaro Cunqueiro, Health Research Institute of Vigo (IVI), Vigo
| | - Paula Sánchez-Pintos
- Diagnosis and Treatment of Congenital Metabolic Diseases Unit (UDyTEMC), Department of Pediatrics, Health Research Institute of Santiago (IDIS), CIBERER, Hospital Clínico Universitario de Santiago de Compostela, Spain
| | - Jose A. Cocho
- Diagnosis and Treatment of Congenital Metabolic Diseases Unit (UDyTEMC), Department of Pediatrics, Health Research Institute of Santiago (IDIS), CIBERER, Hospital Clínico Universitario de Santiago de Compostela, Spain
| | - José R. Fernández Lorenzo
- Neonatal Unit, Pediatric Service, Hospital Alvaro Cunqueiro, Health Research Institute of Vigo (IVI), Vigo
| | - María L. Couce
- Neonatal Unit, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela
- Diagnosis and Treatment of Congenital Metabolic Diseases Unit (UDyTEMC), Department of Pediatrics, Health Research Institute of Santiago (IDIS), CIBERER, Hospital Clínico Universitario de Santiago de Compostela, Spain
| |
Collapse
|
18
|
The Ca 2+-Binding S100B Protein: An Important Diagnostic and Prognostic Neurobiomarker in Pediatric Laboratory Medicine. Methods Mol Biol 2019; 1929:701-728. [PMID: 30710306 DOI: 10.1007/978-1-4939-9030-6_44] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In recent decades a significant scientific effort has focused on projects regarding the use of neurobiomarkers in perinatal medicine with a view to understanding the mechanisms that interfere with physiological patterns of brain development and lead to ominous effects in several human diseases. Numerous potential neurobiomarkers have been proposed for use in monitoring high-risk fetuses and newborns, including markers of oxidative stress, neuroproteins, and vasoactive agents. Nonetheless, the use of these markers in clinical practice remains a matter of debate. Recently, the calcium-binding S100B protein has been proposed as being an ideal neurobiomarker, thanks to its simple availability and easy reproducibility, to the possibility of detecting it noninvasively in biological fluids with good reproducibility, and to the possibility of a longitudinal evaluation in relation to reference curves. The present chapter contains an overview of the most significant studies on the assessment of S100B in different biological fluids as a trophic factor and/or marker of brain damage in high-risk fetuses and newborns.
Collapse
|