1
|
Li J, Chen R, Zhou J, Wang Y, Zhao X, Liu C, Zhou P, Chen Y, Song L, Yan S, Yan H, Zhao H. Lipid Content Distribution and its Clinical Implication in Patients with Acute Myocardial Infarction-Plaque Erosion: Results from the Prospective OCTAMI Study. J Atheroscler Thromb 2024; 31:23-35. [PMID: 37423723 PMCID: PMC10776303 DOI: 10.5551/jat.64144] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
AIMS Plaque erosion (PE) is one of the main plaque phenotypes of acute coronary syndrome (ACS). However, the underlying plaque component and distribution have not been systematically analysed. This study aims to investigate the distribution of lipid and calcium content in culprit lesions assessed by optical coherence tomography (OCT) in patients with PE and explore its relationship with prognosis in a cohort of ST segment elevation myocardial infarction (STEMI) patients. METHODS A prospective cohort of 576 patients with STEMI was enrolled in our study. After exclusion, 152 PE patients with clear underlying plaque components were ultimately analysed. The culprit lesion was divided into the border zone, external erosion zone and erosion site in the longitudinal view. Each pullback of the culprit lesions was assessed by 3 independent investigators frame-by-frame, and the quantity and distribution of lipid and calcium components were recorded. RESULTS Of the 152 PE patients, lipid and calcium contents were more likely to exist in the external erosion zone than in the other regions. In particular, a high level of lipid content proximal to the erosion site was significantly associated with plaque vulnerability and a higher incidence of MACEs. CONCLUSION This study revealed that high level of lipid content in the proximal external erosion zone was related to high-risk plaque characteristics and poor prognosis, which provided a novel method for risk stratification and precise management in patients with plaque erosion.
Collapse
Affiliation(s)
- Jiannan Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Runzhen Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jinying Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxiao Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chen Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Peng Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Li Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Shaodi Yan
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Hongbing Yan
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
- Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hanjun Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Prasad K, Reddy S S, Kaur J, Rao k R, Kumar S, Kadiyala V, Ram Kashyap J, Panwar G. Gender-based in vivo comparison of culprit plaque characteristics and plaque microstructures using optical coherence tomography in acute coronary syndrome. J Cardiovasc Thorac Res 2021; 13:277-284. [PMID: 35047132 PMCID: PMC8749362 DOI: 10.34172/jcvtr.2021.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 12/03/2022] Open
Abstract
Introduction: Women perform worse after acute coronary syndrome (ACS) than men. The reason for these differences is unclear. The aim was to ascertain gender differences in the culprit plaque characteristics in ACS.
Methods: Patients with ACS undergoing percutaneous coronary intervention for the culprit vessel underwent optical coherence tomography (OCT) imaging. Culprit plaque was identified as lipid rich,fibrous, and calcific plaque. Mechanisms underlying ACS are classified as plaque rupture, erosion,or calcified nodule. A lipid rich plaque along with thin-cap fibroatheroma (TCFA) was a vulnerable plaque. Plaque microstructures including cholesterol crystals, macrophages, and microvessels were noted.
Results: A total of 52 patients were enrolled (men=29 and women=23). Baseline demographic features were similar in both the groups except men largely were current smokers (P <0.001). Plaque morphology,men vs. women: lipid rich 88.0% vs. 90.5%; fibrous 4% vs 0%; calcific 8.0% vs. 9.5% (P = 0.64). Of the ACS mechanisms in males versus females; plaque rupture (76.9 % vs. 50 %), plaque erosion (15.4 % vs.40 %) and calcified nodule (7.7 % vs. 10 %) was noted (P = 0.139). Fibrous cap thickness was (50.19 ±11.17 vs. 49.00 ± 10.71 mm, P = 0.71) and thin-cap fibroatheroma (96.2% vs. 95.0%, P = 1.0) in men and women respectively. Likewise no significant difference in presence of macrophages (42.3 % vs. 30%, P = 0.76), microvessels (73.1% vs. 60 %, P = 0.52) and cholesterol crystals (92.3% vs. 80%, P = 0.38).
Conclusion: No significant gender-based in-vivo differences could be discerned in ACS patients’ culprit plaques morphology, characteristics, and underlying mechanisms.
Collapse
Affiliation(s)
- Krishna Prasad
- Department of Cardiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Sreeniavs Reddy S
- Department of Cardiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
- Department of Cardiology, Government Medical College and Hospital, Sector 32, Chandigarh, 160030, India
| | - Jaspreet Kaur
- Department of Cardiology, Government Medical College and Hospital, Sector 32, Chandigarh, 160030, India
| | - Raghavendra Rao k
- Department of Cardiology, Government Medical College and Hospital, Sector 32, Chandigarh, 160030, India
| | - Suraj Kumar
- Department of Cardiology, Government Medical College and Hospital, Sector 32, Chandigarh, 160030, India
| | - Vikas Kadiyala
- Department of Cardiology, Government Medical College and Hospital, Sector 32, Chandigarh, 160030, India
| | - Jeet Ram Kashyap
- Department of Cardiology, Government Medical College and Hospital, Sector 32, Chandigarh, 160030, India
| | - Garima Panwar
- Department of Cardiology, Government Medical College and Hospital, Sector 32, Chandigarh, 160030, India
| |
Collapse
|
3
|
Sibbald M, Pinilla-Echeverri N, Alameer M, Chavarria J, Dutra G, Sheth T. Using Optical Coherence Tomography to Identify Lipid and Its Impact on Interventions and Clinical Events - A Scoping Review. Circ J 2021; 85:2053-2062. [PMID: 34305071 DOI: 10.1253/circj.cj-21-0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Optical coherence tomographic (OCT) imaging has enabled identification of lipid, with increasing interest in how it may affect coronary interventions and clinical outcomes. This review summarizes the available evidence around OCT identification of lipid and its effect on interventions, clinical events, and the natural history of coronary disease. METHODS AND RESULTS We conducted a scoping review using the Medline, HealthStar, and Embase databases for articles published between 1996 and 2021. We screened 1,194 articles and identified 51 for inclusion in this study, summarizing the key findings. The literature supports a common OCT definition of lipid as low-signal regions with diffuse borders, validated against histology and other imaging modalities with acceptable intra- and inter-rater reliability. There is evidence that OCT-identified lipid at the site of stent implantation increases the risk of edge dissection, incomplete stent apposition, in-stent tissue protrusion, decreased coronary flow after stenting, side branch occlusion, and post-procedural cardiac biomarker increases. In mostly retrospective studies, lipid indices measured at non-stented sites are associated with plaque progression and the development of recurrent ischemic events. CONCLUSIONS There is extensive literature supporting the ability of OCT to identify lipid and demonstrating a substantial impact of lipid on percutaneous coronary intervention outcomes. Future work to prospectively evaluate the effect of the characteristics of lipid-rich plaques on long-term clinical outcomes is needed.
Collapse
Affiliation(s)
| | | | | | | | | | - Tej Sheth
- Department of Medicine, McMaster University
- Population Health Research Institute, McMaster University
| |
Collapse
|
4
|
Guo B, Li Z, Tu P, Tang H, Tu Y. Molecular Imaging and Non-molecular Imaging of Atherosclerotic Plaque Thrombosis. Front Cardiovasc Med 2021; 8:692915. [PMID: 34291095 PMCID: PMC8286992 DOI: 10.3389/fcvm.2021.692915] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
Thrombosis in the context of atherosclerosis typically results in life-threatening consequences, including acute coronary events and ischemic stroke. As such, early detection and treatment of thrombosis in atherosclerosis patients is essential. Clinical diagnosis of thrombosis in these patients is typically based upon a combination of imaging approaches. However, conventional imaging modalities primarily focus on assessing the anatomical structure and physiological function, severely constraining their ability to detect early thrombus formation or the processes underlying such pathology. Recently, however, novel molecular and non-molecular imaging strategies have been developed to assess thrombus composition and activity at the molecular and cellular levels more accurately. These approaches have been successfully used to markedly reduce rates of atherothrombotic events in patients suffering from acute coronary syndrome (ACS) by facilitating simultaneous diagnosis and personalized treatment of thrombosis. Moreover, these modalities allow monitoring of plaque condition for preventing plaque rupture and associated adverse cardiovascular events in such patients. Sustained developments in molecular and non-molecular imaging technologies have enabled the increasingly specific and sensitive diagnosis of atherothrombosis in animal studies and clinical settings, making these technologies invaluable to patients' health in the future. In the present review, we discuss current progress regarding the non-molecular and molecular imaging of thrombosis in different animal studies and atherosclerotic patients.
Collapse
Affiliation(s)
- Bingchen Guo
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaoyue Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peiyang Tu
- College of Clinical Medicine, Hubei University of Science and Technology, Xianning, China
| | - Hao Tang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingfeng Tu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Anatomical features and clinical outcome of a honeycomb-like structure in the coronary artery: reports from 16 consecutive patients. Coron Artery Dis 2021; 31:222-229. [PMID: 31658133 DOI: 10.1097/mca.0000000000000822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Recanalization of thrombus in coronary artery tree is defined as a honeycomb-like structure. However, the anatomic features and appropriate treatment of honeycomb-like structure still remain largely unclear. METHODS AND RESULTS Between 2014 July and 2017 December, 17 honeycomb-like structure in 16 patients based on optical coherence tomography and intravascular ultrasound were included. Fractional flow reserve was measured for patients who had thrombolysis in myocardial infarction flow grade 3. Angiographic and optical coherence tomography/intravascular ultrasound-derived variables were studied. Clinical events (until to 2018 December) were collected. Honeycomb-like structures mostly involved left anterior descending artery (68.8%) and localized at proximal-mid (88.2%) segment of vessels. Eight patients had a side branch ≥ 2 mm in diameter taking from honeycomb-like structure. Only one patient had a normal fractional flow reserve. Fifteen patients underwent implantation of a stent. Stent implantation was associated with side branch compromise or closure (4 in each). Of 4 patients with side branch closure, all had a creatine kinase myocardial band > 5 times increase in hospital, with 3 deaths and 1 target lesion revascularization during follow-up. CONCLUSIONS Despite the presence of recanalization, most honeycomb-like structure lesion have a positive fractional flow reserve. Further study is required to address how to protect a large side branch taking from honeycomb-like structure.
Collapse
|
6
|
Subban V, Raffel OC. Optical coherence tomography: fundamentals and clinical utility. Cardiovasc Diagn Ther 2020; 10:1389-1414. [PMID: 33224764 DOI: 10.21037/cdt-20-253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although coronary angiography is the standard method employed to assess the severity of coronary artery disease and to guide treatment strategies, it provides only 2D image of the intravascular lesions. In contrast, intravascular imaging modalities such as optical coherence tomography (OCT) produce cross-sectional images of the coronary arteries at a far greater spatial resolution, capable of accurately determining vessel size as well as plaque morphology, eliminating many of the disadvantages inherent to angiography. This review will discuss the role of OCT in the catherization laboratory for the assessment and management of coronary disease.
Collapse
Affiliation(s)
- Vijayakumar Subban
- Institute of Cardiovascular Diseases, The Madras Medical Mission, Chennai, India
| | - Owen Christopher Raffel
- CardioVascular Clinics, St. Andrews War Memorial Hospital, Queensland, Australia.,Cardiology Program, The Prince Charles Hospital, Queensland, Australia.,Queensland University of Technology, Queensland, Australia.,University of Queensland, Queensland, Australia
| |
Collapse
|