1
|
Liu X, Li M, Jian C, Wei F, Liu H, Li K, Qin X. Astragalus Polysaccharide Alleviates Constipation in the Elderly Via Modification of Gut Microbiota and Fecal Metabolism. Rejuvenation Res 2022; 25:275-290. [PMID: 36205566 DOI: 10.1089/rej.2022.0039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Constipation is one of the most common gastrointestinal disorders, whose incidence increasing with age. As one of the main components, Astragalus polysaccharide (APS) has been used to treat a variety of diseases. This study aimed to explore the effects of APS on the improvement of gastrointestinal functions and learning memory in elderly rats with constipation. In this study, both 16S rRNA sequencing-based microbiome and 1H NMR-based metabolomics were applied to demonstrate the effects of APS on host metabolism and gut microbiota of the elderly rats with constipation. On top of this, we constructed both inter- and inner-layer networks, intuitively showing the correlations among behavioral indicators, intestinal bacteria, and differential metabolites. Our results showed that APS significantly ameliorated the constipation and the cognitive dysfunctions of rats. Microbiome analysis revealed that APS raised the relative abundance of Blautia, whereas decreased the relative abundance of Lactobacillus in the elderly rats with constipation. In addition, APS decreased the levels of acetate, butyrate, and propionate in the fecal samples, correspondingly regulating glycolysis/gluconeogenesis metabolism and pyruvate metabolism. These findings lay solid foundations for understanding the pathogenesis of constipation in the elderly, and also offer a promising new treatment strategy for constipation in the elderly.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan, China
| | - Mengyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan, China
| | - Chen Jian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan, China
| | - Fuxiao Wei
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan, China
| | - Huanle Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan, China
| | - Ke Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan, China
| |
Collapse
|
2
|
Shi Y, Chen F, Wang Z, Cao J, Li C. Effect and mechanism of functional compound fruit drink on gut microbiota in constipation mice. Food Chem 2022; 401:134210. [PMID: 36122488 DOI: 10.1016/j.foodchem.2022.134210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022]
Abstract
Compound fruit drink (CFD) is a functional drink prepared with fruit, Chinese herbs and prebiotic fructooligosaccharide as the main ingredients. Loperamide hydrochloride was used to establish a mouse model of constipation. And the effect of CFD on the improvement of constipation and the impact on gut microbiota were studied. The results showed that CFD significantly enhanced intestinal motility in constipated mice (P < 0.05). It significantly improved serum levels of gastrointestinal regulatory-related peptides, elevated the short-chain fatty acids (SCFAs) content and alleviated colonic injury. Meanwhile, CFD also up-regulated the mRNA expression levels of AQP3, AQP9, SCF and c-Kit and the related protein expression levels. Fecal microbial results showed that the CFD medium-dose group significantly increased species richness. Furthermore, CFD increased the abundance of potentially beneficial bacteria and reduced the number of potentially pathogenic bacteria. This study indicated that CFD was a promising functional drink for effectively relieving constipation.
Collapse
Affiliation(s)
- Yali Shi
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Fei Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Ziqi Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jun Cao
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Chuan Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Transdermal Administration of Volatile Oil from Citrus aurantium-Rhizoma Atractylodis Macrocephalae Alleviates Constipation in Rats by Altering Host Metabolome and Intestinal Microbiota Composition. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9965334. [PMID: 35087623 PMCID: PMC8789429 DOI: 10.1155/2022/9965334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/09/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023]
Abstract
Background The Citrus aurantium- (ZhiShi, ZS-) Rhizoma Atractylodis Macrocephalae (BaiZhu, BZ) pairs are often found in herbal formulas for constipation. The volatile oils of ZS and BZ (ZBVO) have good pharmacological activity against constipation, but the mechanism for treatment of slow transit constipation (STC) remains unclear. Method A rat model using diphenoxylate tablets was constructed to investigate if transdermal administration of ZBVO would mediate intestinal microorganisms and fecal metabolites and improve STC symptoms. The regulatory effects of ZBVO at 0.15, 0.30, and 0.60 mL kg−1 d−1 on STC rats were assessed by measuring fecal water content, intestinal propulsion rate, histopathology, expression of gastrointestinal hormones, brain and intestinal peptides, and inflammatory factors. The changes in intestinal flora of STC rats were analyzed by 16S rRNA gene sequencing. Moreover, the untargeted fecal metabolomics analysis was performed by ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometer (UPLC-Q-TOF-MS) technology. Results The results showed that ZBVO had a modulating effect on STC by increasing the fecal water content and intestinal propulsion rate. Transdermal administration of ZBVO decreased serum levels of interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) and increased the levels of gastrin (GAS) and substance P (SP). In addition, ZBVO increased 5-hydroxytryptamine (5-HT) levels and decreased vasoactive intestinal peptide (VIP) levels in colon and hippocampus tissues. The results of intestinal microbiota showed that ZBVO improved the diversity and abundance of intestinal microbiota and changed the community composition by decreasing Romboutsia and increasing Proteobacteria, Allobaculum, and Ruminococcaceae. And the feces metabolomics found that nicotinate and nicotinamide metabolism, purine metabolism, citrate cycle (TCA cycle), pyruvate metabolism, arachidonic acid metabolism, pyrimidine metabolism, and primary bile acid biosynthesis were modulated. Conclusion These findings suggest that ZBVO can alleviate STC symptoms by promoting intestinal peristalsis, increasing fecal water content, regulating gastrointestinal hormone level, reducing the inflammatory response, and regulating brain and intestinal peptides after transdermal administration. And structural changes in the intestinal microbiota are closely related to host metabolism and intestinal microbiota destroyed in STC modeling could be significantly improved by the ZBVO, which provides a reference for the development of aromatic drug macrohealth products.
Collapse
|
4
|
Managing motility disorders of the gastrointestinal segment and obesity through electrical stimulation. HEALTH AND TECHNOLOGY 2021. [DOI: 10.1007/s12553-021-00590-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
5
|
Wang F, Jin M, Hu Y, Chao Y, Cheng X, Gao Y. Acupoint catgut embedding therapy for functional constipation: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e24286. [PMID: 33530217 PMCID: PMC7850654 DOI: 10.1097/md.0000000000024286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND This review will assess current evidence related to the effectiveness and safety of acupoint catgut embedding therapy for functional constipation (FC) and provide efficacy assessments for clinical applications. METHODS We will search the following databases for relevant trials: PubMed, EMBASE OVID, Cumulative Index of Nursing and Allied Health Literature, OVID MEDLINE, Web of Science, the Cochrane Central Register of Controlled Trials, Cochrane library, and Scopus. We will also search the following Chinese databases for trials published in the Chinese literature: China National Knowledge Infrastructure Database (CNKI), Chinese Scientific Journals Database, Wan Fang Database, Chinese Biomedicine and other resources from inception to December 2020. Only randomized controlled trials comparing acupoint catgut embedding versus acupuncture or sham acupuncture or placebo or other therapies will be included. The outcomes involved mean spontaneous bowel movements, complete spontaneous bowel movements, the Bristol Stool Form Scale, the Cleveland Clinic Score, Patient Assessment of Constipation symptom and so on. The risk of bias assessment and quality of evidence for outcomes will be appraised using the Cochrane Risk of Bias Tool and the Grading of Recommendations, Assessment, Development and Evaluation guidelines. RevMan 5.3 software will be employed for the meta-analysis. RESULTS This work will compare and arrange the comparative efficacy of acupoint catgut embedding with different treatments for FC by summarizing the current evidences. CONCLUSION The results of this meta-analysis may help doctors determine the best treatments for patients to manage FC. ETHICS AND DISSEMINATION This is a protocol with no patient recruitment and personal information collection, approval by the ethics committee is not required. OSF REGISTRATION NUMBER DOI 10.17605/OSF.IO/XTKE2.
Collapse
Affiliation(s)
- Fumin Wang
- School of Acupuncture-Moxibustion and Tuina
| | | | | | - Yuxuan Chao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China, Chengdu University of Traditional Chinese Medicine. No. 37 Shierqiao Road, Jinniu District, Chengdu, Sichuan, China
| | | | - Yuan Gao
- School of Medical Information Engineering
| |
Collapse
|
6
|
Pain Relief during Oocyte Retrieval by Transcutaneous Electrical Acupoint Stimulation: A Single-Blinded, Randomized, Controlled Multicenter Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3285648. [PMID: 33029163 PMCID: PMC7530499 DOI: 10.1155/2020/3285648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/23/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022]
Abstract
Acupuncture has pain-relief effects, but no data were available on the use of transcutaneous electric acupoint stimulation (TEAS) in pain relief during oocyte retrieval. This study was designed to examine the effect of TEAS for pain relief in women undergoing transvaginal ultrasound-guided oocyte aspiration. This single-blinded, multicenter, randomized controlled trial was performed in China between May 2013 and May 2015. The subjects were randomized to mock TEAS and TEAS. TEAS or mock TEAS was administered 30 min before oocyte retrieval until the end of the operation. The primary and secondary endpoints were the pain measured using the visual analog scale (VAS) within 1 min and 1 hour after oocyte retrieval, respectively. Serum β-endorphin levels were tested in the first 50 patients/group. 390 women were undergoing oocyte retrieval. Pain levels evaluated using VAS within 1 min (18.6 ± 1.3 vs. 24.4 ± 1.7, P < 0.01) and 1 h after oocyte aspiration (4.6 ± 0.7 vs. 6.8 ± 0.8, P < 0.05) were lower in the TEAS group than in the mock TEAS group. Nausea assessment revealed a significantly lower VAS score in the TEAS group within 1 min (1.2 ± 0.4 vs. 2.9 ± 0.7, P < 0.033). Serum β-endorphin levels were significantly higher in the TEAS group than in the mock TEAS group (11.4 ± 0.5 vs. 9.1 ± 0.4, P < 0.001) after retrieval. Serum β-endorphin levels were higher in the TEAS group after the procedure than baseline (11.4 ± 0.5 vs. 9.1 ± 0.3, P < 0.001). Oocyte retrieval causes pain and discomfort, but TEAS is effective and safe for suppressing the pain and alleviating nausea associated with the operation.
Collapse
|
7
|
Drouin JS, Pfalzer L, Shim JM, Kim SJ. Comparisons between Manual Lymph Drainage, Abdominal Massage, and Electrical Stimulation on Functional Constipation Outcomes: A Randomized, Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17113924. [PMID: 32492920 PMCID: PMC7313091 DOI: 10.3390/ijerph17113924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Evidence supports abdominal massage (AM) or electrical stimulation (ES) as effective in treating functional constipation (FC). Manual lymph drainage (MLD) may also be beneficial, however, it was not previously investigated or compared to ES and AM. METHODS Sixteen college-aged males and 36 females were recruited. Participants were randomly assigned to MLD, AM or ES. Heart rate variability (HRV) measures for total power (TP), high frequency (HF), low frequency and LF/HF ratio assessed ANS outcomes. state-trait anxiety inventory (STAI) and stress response inventory (SRI) assessed psychological factors and bowel movement frequency (BMF) and duration (BMD) were recorded daily. RESULTS MLD significantly improved all ANS measures (p≤0.01); AM significantly improved LF, HF and LF/HF ratios (p = 0.04); and ES significantly improved LF (p = 0.1). STAI measures improved, but not significantly in all groups. SRI improved significantly from MLD (p < 0.01), AM (p = 0.04) and ES (p < 0.01), but changes were not significant between groups. BMD improved significantly in all groups (p≤ 0.02). BMF improved significantly only following MLD and AM (p < 0.1), but differences between groups were not significant (p = 0.39). CONCLUSIONS MLD significantly reduced FC symptoms and MLD had greater improvements than AM or ES.
Collapse
Affiliation(s)
- Jacqueline S. Drouin
- School of Health Sciences, Oakland University, 433 Meadow Brook Road, Rochester, MI 48309-4451, USA;
| | - Lucinda Pfalzer
- Physical Therapy Department, University of Michigan-Flint, 2157 WSW Bldg., Flint, MI 48502-195, USA;
| | - Jung Myo Shim
- Department of Skin and Health Care, Suseong University, 15 Dalgubeol-daero 528-gil, Suseong-gu, Daegu 13557, Korea;
| | - Seong Jung Kim
- Department of Physical Therapy, College of Health and Science, Kangwon National University, 346, Hwangjo-gil, Dogye-eup, Samcheok-si, Gangwon-do 24341, Korea
- Correspondence: ; Tel.: +82-33-540-3371
| |
Collapse
|
8
|
Jiang H, Dong J, Jiang S, Liang Q, Zhang Y, Liu Z, Ma C, Wang J, Kang W. Effect of Durio zibethinus rind polysaccharide on functional constipation and intestinal microbiota in rats. Food Res Int 2020; 136:109316. [PMID: 32846524 DOI: 10.1016/j.foodres.2020.109316] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/01/2020] [Accepted: 05/14/2020] [Indexed: 01/03/2023]
Abstract
The prevalence of constipation increases rapidly with the increased pressure of some people's life, which seriously affects the quality of life in related patients. In this study, the improvement of functional constipation by Durio zibethinus Murr rind polysaccharide (DZMP) and the effects of DZMP on intestinal microbiota were investigated in a constipation model of Sprague-Dawley (SD) rats established by loperamide hydrochloride. Results showed that DZMP at 200 mg/kg could significantly (P < 0.05) increase the intestinal transit rate, motilin, gastrin, substance P levels and concentration of short-chain fatty acids (SCFAs), reduce the somatostatin levels and improve the gastrointestinal peristalsis of rats. Sequencing showed that the Lachnospiraceae-NK4A136-group in the rats given 200 mg/kg DZMP (16.07%) was significantly higher than that of the model group (10.13%), while the Desulfovibrio was lower (2.99%) than that of the model group (4.19%). Principal co-ordinates analysis (PcoA) revealed a significant difference in intestinal microbiota composition between the model group and the high-dose DZMP group (200 mg/kg). The results demonstrated that DZMP has a regulatory effect of treating functional constipation and regulating intestinal flora in rats.
Collapse
Affiliation(s)
- Huimin Jiang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| | - Jing Dong
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| | - Shengjun Jiang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Qiongxin Liang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Kaifeng Key Laboratory of Functional Components in Health Food, Henan University, Kaifeng 475004, China
| | - Yan Zhang
- Hebei Food Inspection and Research Institute, Shijiazhuang 050091, China
| | - Zhenhua Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Kaifeng Key Laboratory of Functional Components in Health Food, Henan University, Kaifeng 475004, China
| | - Changyang Ma
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China.
| | - Jinmei Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China.
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China.
| |
Collapse
|