1
|
Chaves RCDF, Barbas CSV, Queiroz VNF, Serpa Neto A, Deliberato RO, Pereira AJ, Timenetsky KT, Silva Júnior JM, Takaoka F, de Backer D, Celi LA, Corrêa TD. Assessment of fluid responsiveness using pulse pressure variation, stroke volume variation, plethysmographic variability index, central venous pressure, and inferior vena cava variation in patients undergoing mechanical ventilation: a systematic review and meta-analysis. Crit Care 2024; 28:289. [PMID: 39217370 PMCID: PMC11366151 DOI: 10.1186/s13054-024-05078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024] Open
Abstract
IMPORTANCE Maneuvers assessing fluid responsiveness before an intravascular volume expansion may limit useless fluid administration, which in turn may improve outcomes. OBJECTIVE To describe maneuvers for assessing fluid responsiveness in mechanically ventilated patients. REGISTRATION The protocol was registered at PROSPERO: CRD42019146781. INFORMATION SOURCES AND SEARCH PubMed, EMBASE, CINAHL, SCOPUS, and Web of Science were search from inception to 08/08/2023. STUDY SELECTION AND DATA COLLECTION Prospective and intervention studies were selected. STATISTICAL ANALYSIS Data for each maneuver were reported individually and data from the five most employed maneuvers were aggregated. A traditional and a Bayesian meta-analysis approach were performed. RESULTS A total of 69 studies, encompassing 3185 fluid challenges and 2711 patients were analyzed. The prevalence of fluid responsiveness was 49.9%. Pulse pressure variation (PPV) was studied in 40 studies, mean threshold with 95% confidence intervals (95% CI) = 11.5 (10.5-12.4)%, and area under the receiver operating characteristics curve (AUC) with 95% CI was 0.87 (0.84-0.90). Stroke volume variation (SVV) was studied in 24 studies, mean threshold with 95% CI = 12.1 (10.9-13.3)%, and AUC with 95% CI was 0.87 (0.84-0.91). The plethysmographic variability index (PVI) was studied in 17 studies, mean threshold = 13.8 (12.3-15.3)%, and AUC was 0.88 (0.82-0.94). Central venous pressure (CVP) was studied in 12 studies, mean threshold with 95% CI = 9.0 (7.7-10.1) mmHg, and AUC with 95% CI was 0.77 (0.69-0.87). Inferior vena cava variation (∆IVC) was studied in 8 studies, mean threshold = 15.4 (13.3-17.6)%, and AUC with 95% CI was 0.83 (0.78-0.89). CONCLUSIONS Fluid responsiveness can be reliably assessed in adult patients under mechanical ventilation. Among the five maneuvers compared in predicting fluid responsiveness, PPV, SVV, and PVI were superior to CVP and ∆IVC. However, there is no data supporting any of the above mentioned as being the best maneuver. Additionally, other well-established tests, such as the passive leg raising test, end-expiratory occlusion test, and tidal volume challenge, are also reliable.
Collapse
Affiliation(s)
- Renato Carneiro de Freitas Chaves
- Department of Intensive Care, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
- Department of Anesthesiology, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
- Department of Pneumology, Instituto do Coração (INCOR), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
- MIT Critical Data, Laboratory for Computational Physiology, Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Critical Care Medicine and Anesthesiology, Hospital Israelita Albert Einstein, Avenida Albert Einstein, 627/701, 5° Floor, São Paulo, SP, 05651-901, Brazil.
| | - Carmen Silvia Valente Barbas
- Department of Intensive Care, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Department of Pneumology, Instituto do Coração (INCOR), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Veronica Neves Fialho Queiroz
- Department of Anesthesiology, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Department of Anesthesiology, Takaoka Anestesia, São Paulo, SP, Brazil
| | - Ary Serpa Neto
- Department of Intensive Care, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), Melbourne, VIC, Australia
- Department of Intensive Care, Melbourne Medical School, University of Melbourne, Austin Hospital, Melbourne, Australia
| | - Rodrigo Octavio Deliberato
- MIT Critical Data, Laboratory for Computational Physiology, Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Translational Health Intelligence and Knowledge Lab, Department of Biostatistics, Health Informatics and Data Science, University of Cincinnati, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Adriano José Pereira
- Department of Intensive Care, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | | | - Flávio Takaoka
- Department of Anesthesiology, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Department of Anesthesiology, Takaoka Anestesia, São Paulo, SP, Brazil
| | - Daniel de Backer
- Department of Intensive Care, CHIREC Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| | - Leo Anthony Celi
- MIT Critical Data, Laboratory for Computational Physiology, Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
2
|
Jaszczuk S, Natarajan S, Papalois V. Anaesthetic Approach to Enhanced Recovery after Surgery for Kidney Transplantation: A Narrative Review. J Clin Med 2022; 11:3435. [PMID: 35743505 PMCID: PMC9225521 DOI: 10.3390/jcm11123435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
Enhanced recovery after surgery (ERAS) protocols are designed to reduce medical complications, the length of hospital stays (LoS), and healthcare costs. ERAS is considered safe and effective for kidney transplant (KTx) surgery. KTx recipients are often frail with multiple comorbidities. As these patients follow an extensive diagnostic pathway preoperatively, the ERAS protocol can ideally be implemented at this stage. Small singular changes in a long perioperative pathway can result in significant positive outcomes. We have investigated the current evidence for an ERAS pathway related to anaesthetic considerations in renal transplant surgery for adult recipients.
Collapse
Affiliation(s)
| | - Shweta Natarajan
- Department of Anaesthesia, Imperial College, London W12 0HS, UK;
| | | |
Collapse
|
3
|
Abstract
The practice of anesthesiology is inextricably dependent upon technology. Anesthetics were first made possible, then increasingly safe, and now more scalable and efficient in part due to advances in monitoring and delivery technology. Herein, we discuss salient advances of the last three years in the technology of anesthesiology. Consumer technology and telemedicine have exploded onto the scene of outpatient medicine, and perioperative management is no exception. Preoperative evaluations have been done via teleconference, and copious consumer-generated health data is available. Regulators have acknowledged the vast potential found in the transfer of consumer technology to medical practice, but issues of privacy, data ownership/security, and validity remain. Inside the operating suite, monitoring has become less invasive, and clinical decision support systems are common. These technologies are susceptible to the “garbage in, garbage out” conundrum plaguing artificial intelligence, but they will improve as network latency decreases. Automation looms large in the future of anesthesiology as closed-loop anesthesia delivery systems are being tested in combination (moving toward a comprehensive system). Moving forward, consumer health companies will search for applications of their technology, and loosely regulated health markets will see earlier adoption of next-generation technology. Innovations coming to anesthesia will need to account for human factors as the anesthesia provider is increasingly considered a component of the patient care apparatus.
Collapse
Affiliation(s)
- Christian Seger
- Department of Anesthesiology and Perioperative Medicine,UCLA David Geffen School of Medicine, University of California, 757 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Maxime Cannesson
- Department of Anesthesiology and Perioperative Medicine,UCLA David Geffen School of Medicine, University of California, 757 Westwood Plaza, Los Angeles, CA, 90095, USA
| |
Collapse
|
4
|
Liu T, Xu C, Wang M, Niu Z, Qi D. Reliability of pleth variability index in predicting preload responsiveness of mechanically ventilated patients under various conditions: a systematic review and meta-analysis. BMC Anesthesiol 2019; 19:67. [PMID: 31068139 PMCID: PMC6507157 DOI: 10.1186/s12871-019-0744-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022] Open
Abstract
Background Goal-directed volume expansion is increasingly used for fluid management in mechanically ventilated patients. The Pleth Variability Index (PVI) has been shown to reliably predict preload responsiveness; however, a lot of research on PVI has been published recently, and update of the meta-analysis needs to be completed. Methods We searched PUBMED, EMBASE, Cochrane Library, Web of Science (updated to November 7, 2018) and the associated references. Relevant authors and researchers had been contacted for complete data. Results Twenty-five studies with 975 mechanically ventilated patients were included in this meta-analysis. The area under the curve (AUC) of receiver operating characteristics (ROC) to predict preload responsiveness was 0.82 (95% confidence interval (CI) 0.79–0.85). The pooled sensitivity was 0.77 (95% CI 0.67–0.85) and the pooled specificity was 0.77 (95% CI 0.71–0.82). The results of subgroup of patients without undergoing surgery (AUC =0.86, Youden index =0.65) and the results of subgroup of patients in ICU (AUC =0.89, Youden index =0.67) were reliable. Conclusion The reliability of the PVI is limited, but the PVI can play an important role in bedside monitoring for mechanically ventilated patients who are not undergoing surgery. Patients who are expanded with colloid may be more suitable for PVI. Electronic supplementary material The online version of this article (10.1186/s12871-019-0744-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tianyu Liu
- Key Laboratory of Anesthesia and Analgesia, Xuzhou Medical University, Xuzhou, Jangsu, China.,Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jangsu, China
| | - Chao Xu
- Key Laboratory of Anesthesia and Analgesia, Xuzhou Medical University, Xuzhou, Jangsu, China.,Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jangsu, China
| | - Min Wang
- Key Laboratory of Anesthesia and Analgesia, Xuzhou Medical University, Xuzhou, Jangsu, China.,Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jangsu, China
| | - Zheng Niu
- Key Laboratory of Anesthesia and Analgesia, Xuzhou Medical University, Xuzhou, Jangsu, China.,Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jangsu, China
| | - Dunyi Qi
- Key Laboratory of Anesthesia and Analgesia, Xuzhou Medical University, Xuzhou, Jangsu, China. .,Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jangsu, China.
| |
Collapse
|
5
|
Pleth variability index versus pulse pressure variation for intraoperative goal-directed fluid therapy in patients undergoing low-to-moderate risk abdominal surgery: a randomized controlled trial. BMC Anesthesiol 2019; 19:34. [PMID: 30851740 PMCID: PMC6408844 DOI: 10.1186/s12871-019-0707-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/01/2019] [Indexed: 12/15/2022] Open
Abstract
Background Goal-directed fluid therapy (GDFT) based on dynamic indicators of fluid responsiveness has been shown to decrease postoperative complications and hospital length of stay (LOS) in patients undergoing major abdominal surgery. The usefulness of this approach still needs to be clarified in low-to-moderate risk abdominal surgery. Both pulse-pressure variation (PPV) and pleth variability index (PVI) can be used to guide GDFT strategies. The objective of this prospective randomized controlled trial was to determine if the use of PVI guided GDFT, when compared to PPV guided GDFT, would lead to similar hospital LOS in patients undergoing low-to-moderate risk surgery. Secondary outcomes included amount of fluid administered and incidence of postoperative complications. Methods Patients were randomized into either PVI or PPV guided GDFT groups. Both received a baseline 2 ml kg− 1 h− 1 Lactated Ringer infusion. Additional fluid boluses consisted of 250 mL of colloid that was infused over a 10 min period if PVI was > 15% or PPV was > 13% for at least five minutes. The primary outcome was to determine if hospital LOS, which was defined as the number of days from surgery up to the day the surgeon authorized hospital discharge, was equivalent between the two groups. Results A total of 76 patients were included and they were randomized into two groups of 38 patients. Baseline characteristics were similar in both groups. Both PVI and PPV guided GDFT strategies were equivalent for the primary outcome of LOS (median [interquartile range]) (days) 2.5 [2.0–3.3] vs. 3.0 [2.0–5.0], p = 0.230, respectively. Fluids infused, postoperative complications, and all other outcomes were not different between groups. Conclusion In patients undergoing low-to-moderate risk abdominal surgery, PVI seems to guide GDFT similarly to PPV in regards to hospital LOS, amount of fluid, and incidence of postoperative complications. However, in low-risk patients undergoing these surgical procedures optimizing stroke volume may have limited impact on outcome. Trial registration ClinicalTrials.gov Identifier: NCT02908256, September 2016, retrospectively registered. Electronic supplementary material The online version of this article (10.1186/s12871-019-0707-9) contains supplementary material, which is available to authorized users.
Collapse
|