1
|
Fenili G, Scaricamazza S, Ferri A, Valle C, Paronetto MP. Physical exercise in amyotrophic lateral sclerosis: a potential co-adjuvant therapeutic option to counteract disease progression. Front Cell Dev Biol 2024; 12:1421566. [PMID: 39156974 PMCID: PMC11327861 DOI: 10.3389/fcell.2024.1421566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/25/2024] [Indexed: 08/20/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disorder characterized by the selective degeneration of upper and lower motor neurons, leading to progressive muscle weakness and atrophy. The mean survival time is two to five years. Although the hunt for drugs has greatly advanced over the past decade, no cure is available for ALS yet. The role of intense physical activity in the etiology of ALS has been debated for several decades without reaching a clear conclusion. The benefits of organized physical activity on fitness and mental health have been widely described. Indeed, by acting on specific mechanisms, physical activity can influence the physiology of several chronic conditions. It was shown to improve skeletal muscle metabolism and regeneration, neurogenesis, mitochondrial biogenesis, and antioxidant defense. Interestingly, all these pathways are involved in ALS pathology. This review will provide a broad overview of the effect of different exercise protocols on the onset and progression of ALS, both in humans and in animal models. Furthermore, we will discuss challenges and opportunities to exploit physiological responses of imposed exercise training for therapeutic purposes.
Collapse
Affiliation(s)
- Gianmarco Fenili
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Silvia Scaricamazza
- Laboratory of Metabolomics, Fondazione Santa Lucia IRCCS, Rome, Italy
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Alberto Ferri
- Laboratory of Metabolomics, Fondazione Santa Lucia IRCCS, Rome, Italy
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Cristiana Valle
- Laboratory of Metabolomics, Fondazione Santa Lucia IRCCS, Rome, Italy
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Rome, Italy
| |
Collapse
|
2
|
Papadopoulou M, Papapostolou A, Dimakopoulos R, Salakou S, Koropouli E, Fanouraki S, Bakola E, Moschovos C, Tsivgoulis G. Non-Pharmacological Interventions on Pain in Amyotrophic Lateral Sclerosis Patients: A Systematic Review and Meta-Analysis. Healthcare (Basel) 2024; 12:770. [PMID: 38610192 PMCID: PMC11011838 DOI: 10.3390/healthcare12070770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting upper and lower motor neurons. Some ALS patients exhibit concomitant nonmotor signs; thus, ALS is considered a multisystemic disorder. Pain is an important nonmotor symptom. Observational and case-control studies report high frequency of pain in ALS patients and it has been correlated with depression and quality of life. There are no specific scales for the assessment of pain and no randomized controlled trials (RCTs) regarding the drug management of pain in ALS. AIM To systematically review the evidence for the nonpharmacological interventions (NPIs) in relieving pain in ALS, on March 2024, we searched the following databases: Pubmed, Scopus, Web of Science, and Cochrane. We also checked the bibliographies of trials identified to include further published or unpublished trials. MAIN RESULTS A total of 1003 records were identified. Finally, five RCTs including 131 patients (64 in the intervention group and 67 in the control group) were included for meta-analysis. The interventions of the included RCTs consisted of muscle exercise, combined aerobics-strength intervention, and osteopathic manual treatment. The meta-analysis did not find a statistically significant difference in favor of NPIs for alleviating pain in ALS patients. CONCLUSIONS ALS has a fulminant course and irreversibly leads to death. Pain in ALS patients, although a common nonmotor symptom, is often unrecognized and undertreated, and this is underlined by the lack of any RCTs on drug therapy for pain. Albeit NPIs are considered safe, as adverse effects are rarely reported, this systematic review did not provide sufficient evidence for a beneficial effect on pain. The scarceness of relevant literature highlights the need for future studies, with larger samples, more homogeneous in terms of interventions and population characteristics (stage of disease), and better choice of measurement scales to further investigate the efficacy, if any, of various pain interventions in ALS patients.
Collapse
Affiliation(s)
- Marianna Papadopoulou
- Department of Physiotherapy, University of West Attica, Ag. Spyridonos Str., 12243 Athens, Greece;
- Second Department of Neurology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, Rimini 1, 12462 Athens, Greece; (A.P.); (S.S.); (E.K.); (S.F.); (E.B.); (C.M.); (G.T.)
| | - Apostolos Papapostolou
- Second Department of Neurology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, Rimini 1, 12462 Athens, Greece; (A.P.); (S.S.); (E.K.); (S.F.); (E.B.); (C.M.); (G.T.)
| | - Rigas Dimakopoulos
- Department of Physiotherapy, University of West Attica, Ag. Spyridonos Str., 12243 Athens, Greece;
| | - Stavroula Salakou
- Second Department of Neurology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, Rimini 1, 12462 Athens, Greece; (A.P.); (S.S.); (E.K.); (S.F.); (E.B.); (C.M.); (G.T.)
| | - Eleftheria Koropouli
- Second Department of Neurology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, Rimini 1, 12462 Athens, Greece; (A.P.); (S.S.); (E.K.); (S.F.); (E.B.); (C.M.); (G.T.)
| | - Stella Fanouraki
- Second Department of Neurology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, Rimini 1, 12462 Athens, Greece; (A.P.); (S.S.); (E.K.); (S.F.); (E.B.); (C.M.); (G.T.)
| | - Eleni Bakola
- Second Department of Neurology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, Rimini 1, 12462 Athens, Greece; (A.P.); (S.S.); (E.K.); (S.F.); (E.B.); (C.M.); (G.T.)
| | - Christos Moschovos
- Second Department of Neurology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, Rimini 1, 12462 Athens, Greece; (A.P.); (S.S.); (E.K.); (S.F.); (E.B.); (C.M.); (G.T.)
| | - Georgios Tsivgoulis
- Second Department of Neurology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, Rimini 1, 12462 Athens, Greece; (A.P.); (S.S.); (E.K.); (S.F.); (E.B.); (C.M.); (G.T.)
| |
Collapse
|
3
|
Petri S, Grehl T, Grosskreutz J, Hecht M, Hermann A, Jesse S, Lingor P, Löscher W, Maier A, Schoser B, Weber M, Ludolph AC. Guideline "Motor neuron diseases" of the German Society of Neurology (Deutsche Gesellschaft für Neurologie). Neurol Res Pract 2023; 5:25. [PMID: 37316950 DOI: 10.1186/s42466-023-00251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023] Open
Abstract
INTRODUCTION In 2021, the Deutsche Gesellschaft für Neurology published a new guideline on diagnosis and therapy of motor neuron disorders. Motor neuron disorders affect upper motor neurons in the primary motor cortex and/or lower motor neurons in the brain stem and spinal cord. The most frequent motor neuron disease amyotrophic lateral sclerosis (ALS) is a rapidly progressive disease with an average life expectancy of 2-4 years with a yearly incidence of 3.1/100,000 in Central Europe (Rosenbohm et al. in J Neurol 264(4):749-757, 2017. https://doi.org/10.1007/s00415-017-8413-3 ). It is considered a rare disease mainly due to its low prevalence as a consequence of short disease duration. RECOMMENDATIONS These guidelines comprise recommendations regarding differential diagnosis, neuroprotective therapies and multidisciplinary palliative care including management of respiration and nutrition as well as provision of assistive devices and end-of-life situations. CONCLUSION Diagnostic and therapeutic guidelines are necessary due the comparatively high number of cases and the aggressive disease course. Given the low prevalence and the severe impairment of patients, it is often impossible to generate evidence-based data so that ALS guidelines are partially dependent on expert opinion.
Collapse
Affiliation(s)
- Susanne Petri
- Klinik für Neurologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Torsten Grehl
- Neurologie, Alfried-Krupp-Krankenhaus, Essen, Germany
| | | | - Martin Hecht
- Neurologie, Bezirkskrankenhaus Kaufbeuren, Kaufbeuren, Germany
| | | | | | | | - Wolfgang Löscher
- Neurologie, Medizinische Universität Innsbruck, Innsbruck, Austria
- ÖGN, Vienna, Austria
| | - André Maier
- Neurologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Marcus Weber
- Muskelzentrum, Kantonspital St. Gallen, St. Gallen, Switzerland
- SNG, St. Gallen, Switzerland
| | | |
Collapse
|
4
|
A meta-analysis of post-exercise outcomes in people with amyotrophic lateral sclerosis. eNeurologicalSci 2023; 31:100452. [PMID: 36875937 PMCID: PMC9982645 DOI: 10.1016/j.ensci.2023.100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Objective To systematically evaluate post-exercise outcomes related to function and quality of life in people with ALS. Methods PRISMA guidelines were used for identifying and extracting articles. Levels of evidence and quality of articles were judged based on The Oxford Centre for Evidence-based Medicine Levels of Evidence and the QualSyst. Outcomes were analyzed with Comprehensive Meta-Analysis V2 software, random effects models, and Hedge's G. Effects were examined at 0-4 months, up to 6 months, and > 6 months. Pre-specified sensitivity analyses were performed for 1) controlled trials vs. all studies and 2) ALSFRS-R bulbar, respiratory, and motor subscales. Heterogeneity of pooled outcomes was computed with the I2 statistic. Results 16 studies and seven functional outcomes met inclusion for the meta-analysis. Of the outcomes explored, the ALSFRS-R demonstrated a favorable summary effect size and had acceptable heterogeneity and dispersion. While FIM scores demonstrated a favorable summary effect size, heterogeneity limited interpretations. Other outcomes did not demonstrate a favorable summary effect size and/or could not be reported due to few studies reporting outcomes. Conclusions This study provides inconclusive guidance regarding exercise regimens to maintain function and quality of life in people with ALS due to study limitations (e.g., small sample size, high attrition rate, heterogeneity in methods and participants, etc.). Future research is warranted to determine optimal treatment regimens and dosage parameters in this patient population.
Collapse
Key Words
- 25FWT, (25 Feet Walk Test)
- 6MWT, (6 Minute Walk Test)
- ALS, (amyotrophic lateral sclerosis)
- ALSFRS-R, (ALS Functional Rating Scale-Revised)
- Amyotrophic lateral sclerosis
- DIGEST, (Dynamic Imaging Grade of Swallowing Toxicity)
- EAT-10, (Eating Assessment Tool)
- EMST, (Expiratory muscle strength training)
- Exercise
- FAC, (Functional Ambulation Categories)
- FIM, (Functional Independence Measurement)
- FOIS, (Functional Oral Intake Scale)
- FSS, (Fatigue Severity Scale)
- FVC, (forced vital capacity)
- IMST, (Inspiratory muscle strength training)
- ITT, (intention-to-treat)
- KEMS, (knee extension muscle strength)
- MEP, (maximum expiratory pressure)
- MIP, (maximum inspiratory pressure)
- MND, (motor neuron disease)
- MVIC, (maximum voluntary isometric contraction)
- Motor neuron disease
- Outcome measures
- PAS, (Penetration Aspiration Scale)
- PEF, (peak expiratory flow)
- PRISMA-2009, (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
- RCTs, (randomized controlled trials)
- RPE, (rating of perceived exertion)
- Rehabilitation
- SNIP, (sniff nasal inspiratory pressure)
Collapse
|
5
|
Alencar MA, Guedes MCB, Pereira TAL, Rangel MFDA, Abdo JS, Souza LCD. Functional ambulation decline and factors associated in amyotrophic lateral sclerosis. FISIOTERAPIA EM MOVIMENTO 2022. [DOI: 10.1590/fm.2022.35127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract Introduction: Amyotrophic lateral sclerosis (ALS) is a disabling neurodegenerative disease, which compromises locomotion and functional independence. As the goal of physical therapy is to maintain the individual's locomotion capacity and independence as long as possible, it is necessary to gain a better understanding of the possible factors associated with the loss of this capacity. Objective: To evaluate functional ambulation in patients with ALS and possible factors associated with its decline. Methods: A cross-sectional study was conducted with sporadic ALS patients. Demographic and clinical/functional aspects were evaluated. ALS Functional Rating Scale-Revised (ALSFRS-R), Functional Ambulation Category, Medical Research Council scale and Fatigue Severity Scale were used. Descriptive and comparative analyses were conducted of the groups capable and incapable of functional ambulation. Binary logistic regression (stepwise forward method) was performed to determine potential factors associated with the loss of functional ambulation. Results: Among the 55 patients (mean age: 56.9 ± 11.2 years), 74.5% were able to walk functionally. Differences were found between groups regarding time of diagnosis, number of falls, pain, use of noninvasive ventilation, gastrostomy, ability to turn in bed, mobility aids, home adaptations, functional performance, muscle strength and fatigue. The possible predictors of walking disability were overall muscle strength (OR = 0.837; p = 0.003) and fatigue (OR =1.653; p = 0.034). Conclusion: Muscle strength and fatigue are associated with the decline in ambulation capacity in patients with ALS. In view of the complexity of elements involved in walking, further studies are needed to investigate the influence of these aspects in this population.
Collapse
|
6
|
Ortega-Hombrados L, Molina-Torres G, Galán-Mercant A, Sánchez-Guerrero E, González-Sánchez M, Ruiz-Muñoz M. Systematic Review of Therapeutic Physical Exercise in Patients with Amyotrophic Lateral Sclerosis over Time. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031074. [PMID: 33530383 PMCID: PMC7908444 DOI: 10.3390/ijerph18031074] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
Abstract
Background: the main objective of this study was to analyze the potential short-, medium- and long-term effects of a therapeutic physical exercise (TFE) programme on the functionality of amyotrophic lateral sclerosis (ALS) patients, measured with the Revised Amyotrophic Lateral Sclerosis Functional Scale (ALSFRS-R) scale. Methods: a systematic review of the PubMed, SCOPUS, Cochrane, Scientific Electronic Library Online (Scielo), Physiotherapy Evidence Database (PEDro), Cumulative Index of Nursing and Allied Health Literature (CINAHL) and Medical Literature Analysis and Retrieval System Online (MEDline) databases was carried out. The information was filtered using the following Medical Subjects Heading (MeSH) terms: “Amyotrophic lateral sclerosis”, “Physical Therapy”, and “Physical and Rehabilitation Medicine”. The internal validity of the selected documents was evaluated using the PEDro scale. The study included clinical trials published in the last 5 years in which one of the interventions was therapeutic physical exercise in patients with ALS, using the ALSFRS-R as the main outcome variable and functional variables as secondary variables. Results: 10 clinical trials were analyzed, with an internal validity of 5–7 points. The TFE groups showed significant short-, medium- and long-term differences, obtaining a mean difference of 5.8 points compared to the 7.6 points obtained by the control groups, at six months, measured with ALSFRS-R. In addition, the participants showed significant improvements in functional abilities in the short, medium and long terms. Conclusions: Therapeutic physical exercise could contribute to slowing down the deterioration of the musculature of patients with ALS, thus facilitating their performance in activities of daily living, based on the significant differences shown by these individuals in the short, medium and long term both in subjective perception, measured with ALSFRS-R, and functional capacities.
Collapse
Affiliation(s)
- Laura Ortega-Hombrados
- Department of Physiotherapy, Faculty of Health Sciences, University of Málaga, 29071 Málaga, Spain; (L.O.-H.); (E.S.-G.)
| | - Guadalupe Molina-Torres
- Department of Nursing Sciences, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almería, 04120 Almería, Spain;
| | - Alejandro Galán-Mercant
- MOVE-IT Research Group, INIBICA Institute, University of Cádiz, 11110 Cádiz, Spain
- Department of Nursing and Physiotherapy, University of Cádiz, 11003 Cádiz, Spain
- Biomedical Research and Innovation Institute of Cádiz (INIBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, 11003 Cádiz, Spain
- Correspondence: (A.G.-M.); (M.G.-S.)
| | - Eduardo Sánchez-Guerrero
- Department of Physiotherapy, Faculty of Health Sciences, University of Málaga, 29071 Málaga, Spain; (L.O.-H.); (E.S.-G.)
- Institute of Biomedicine of Málaga (IBIMA), 29010 Málaga, Spain;
| | - Manuel González-Sánchez
- Department of Physiotherapy, Faculty of Health Sciences, University of Málaga, 29071 Málaga, Spain; (L.O.-H.); (E.S.-G.)
- Institute of Biomedicine of Málaga (IBIMA), 29010 Málaga, Spain;
- Correspondence: (A.G.-M.); (M.G.-S.)
| | - María Ruiz-Muñoz
- Institute of Biomedicine of Málaga (IBIMA), 29010 Málaga, Spain;
- Department of Nursing and Podiatry, Faculty of Health Sciences, University of Málaga, 29071 Málaga, Spain
| |
Collapse
|
7
|
Manzano R, Toivonen JM, Moreno-Martínez L, de la Torre M, Moreno-García L, López-Royo T, Molina N, Zaragoza P, Calvo AC, Osta R. What skeletal muscle has to say in amyotrophic lateral sclerosis: Implications for therapy. Br J Pharmacol 2020; 178:1279-1297. [PMID: 32986860 DOI: 10.1111/bph.15276] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/03/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult onset disorder characterized by progressive neuromuscular junction (NMJ) dismantling and degeneration of motor neurons leading to atrophy and paralysis of voluntary muscles responsible for motion and breathing. Except for a minority of patients harbouring genetic mutations, the origin of most ALS cases remains elusive. Peripheral tissues, and particularly skeletal muscle, have lately demonstrated an active contribution to disease pathology attracting a growing interest for these tissues as therapeutic targets in ALS. In this sense, molecular mechanisms essential for cell and tissue homeostasis have been shown to be deregulated in the disease. These include muscle metabolism and mitochondrial activity, RNA processing, tissue-resident stem cell function responsible for muscle regeneration, and proteostasis that regulates muscle mass in adulthood. This review aims to compile scientific evidence that demonstrates the role of skeletal muscle in ALS pathology and serves as reference for development of novel therapeutic strategies targeting this tissue to delay disease onset and progression. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Raquel Manzano
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Janne Markus Toivonen
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Laura Moreno-Martínez
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Miriam de la Torre
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Leticia Moreno-García
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Tresa López-Royo
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Nora Molina
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain.,Geriatrics Service, Hospital Nuestra Señora de Gracia, Zaragoza, Spain
| | - Pilar Zaragoza
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Ana Cristina Calvo
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Rosario Osta
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| |
Collapse
|
8
|
Memon AA, Coleman JJ, Amara AW. Effects of exercise on sleep in neurodegenerative disease. Neurobiol Dis 2020; 140:104859. [PMID: 32243913 PMCID: PMC7497904 DOI: 10.1016/j.nbd.2020.104859] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/22/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
As the population ages, the incidence and prevalence of neurodegenerative disorders will continue to increase. Persons with neurodegenerative disease frequently experience sleep disorders, which not only affect quality of life, but potentially accelerate progression of the disease. Unfortunately, pharmacological interventions are often futile or have adverse effects. Therefore, investigation of non-pharmacological interventions has the potential to expand the treatment landscape for these disorders. The last decade has observed increasing recognition of the beneficial role of exercise in brain diseases, and neurodegenerative disorders in particular. In this review, we will focus on the therapeutic role of exercise for sleep dysfunction in four neurodegenerative diseases, namely Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Available data suggest that exercise may have the potential to improve sleep disorders and attenuate neurodegeneration, particularly in Alzheimer's disease and Parkinson's disease. However, additional research is required in order to understand the most effective exercise therapy for these indications; the best way to monitor the response to interventions; the influence of exercise on sleep dysfunction in Huntington's disease and amyotrophic lateral sclerosis; and the mechanisms underlying exercise-induced sleep modifications.
Collapse
Affiliation(s)
- Adeel A Memon
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Juliana J Coleman
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Amy W Amara
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America; UAB Center for Exercise Medicine, Birmingham, AL 35205, United States of America; UAB Sleep and Circadian Research Core, United States of America.
| |
Collapse
|
9
|
Effects of Physical Activity on Amyotrophic Lateral Sclerosis. J Funct Morphol Kinesiol 2020; 5:jfmk5020029. [PMID: 33467245 PMCID: PMC7739242 DOI: 10.3390/jfmk5020029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a heterogeneous neurodegenerative disease characterized by the loss of upper and lower motor neurons. To date, no resolutive cure is available, and only two Food and Drug Administration-approved drugs are used to treat ALS without a resolutive outcome. In recent years, the study of the beneficial effects of physical activity on health has acquired special relevance. However, the relationship between ALS progression and physical exercise is still a hotly debated topic in medicine. Some studies have suggested higher risks to develop the disease that are associated with practicing intense physical activity, as seen in professional soccer or football players, for example. On the contrary, moderate training has been shown to exert several benefits in ALS-affected patients. Overall, more studies are needed to clarify whether physical activity is helpful or harmful for developing ALS.
Collapse
|
10
|
Tsitkanou S, Della Gatta P, Foletta V, Russell A. The Role of Exercise as a Non-pharmacological Therapeutic Approach for Amyotrophic Lateral Sclerosis: Beneficial or Detrimental? Front Neurol 2019; 10:783. [PMID: 31379732 PMCID: PMC6652799 DOI: 10.3389/fneur.2019.00783] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease, involves the rapid deterioration of motor neurons resulting in severe muscle atrophy and respiratory insufficiency. It is considered a "multisystemic" disease with many potential mechanisms responsible for its pathology. Currently, there is no cure for ALS. Exercise training is suggested as a potential approach to reduce ALS pathology, but its beneficial role remains controversial. This review provides an overview of the effects of exercise training in ALS-affected mice and patients. It will compare the intensity, duration, and type of exercise on the health of SOD1G93A mice, a mouse model of familial ALS, and review clinical studies involving ALS patients undergoing both endurance and resistance training. In summary, mild-to-moderate swimming-based endurance training appears the most advantageous mode of exercise in SOD1G93A mice, improving animal survival, and delaying the onset and progression of disease. Furthermore, clinical studies show that both endurance and resistance training have an advantageous impact on the quality of life of ALS patients without extending life expectancy. However, small sample sizes, non-representative control populations, heterogeneous disease stage of patients, and the presence of confounders often exist in the exercise studies conducted with ALS patients. This raises concerns about the interpretation of these findings and, therefore, these results should be considered with caution. While promising, more pre-clinical and clinical studies with improved experimental design and fewer limitations are still necessary to confirm the impact of exercise training on the health of ALS patients.
Collapse
Affiliation(s)
- Stavroula Tsitkanou
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Paul Della Gatta
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Victoria Foletta
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Aaron Russell
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| |
Collapse
|