1
|
Chauhan N, Pareek S, Rosario W, Rawal R, Jain U. An insight into the state of nanotechnology-based electrochemical biosensors for PCOS detection. Anal Biochem 2024; 687:115412. [PMID: 38040173 DOI: 10.1016/j.ab.2023.115412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders affecting many women of reproductive age all over the world. PCOS is associated with the onset of enduring health complications, notably diabetes and cardiovascular diseases. Furthermore, PCOS escalates the propensity for conditions such as obesity, insulin resistance, and dyslipidemia, which can potentially culminate in life-threatening scenarios. A pervasive predicament surrounding PCOS pertains to its underdiagnosis due to discrepancies in diagnostic criteria and the intricacy of available testing methodologies. Consequently, many women encounter substantial delays in diagnosis with traditional diagnostic approaches. Prompt identification is imperative, as any delay can precipitate severe consequences. The conventional techniques employed for PCOS detection typically suffer from suboptimal accuracy, protracted assay times, and inherent limitations, thereby constraining their widespread applicability and accessibility. In response to these challenges, various electrochemical methods leveraging nanotechnology have been documented. In this concise review, we endeavor to delineate the deficiencies associated with established conventional methodologies while accentuating the distinctive attributes and benefits inherent to contemporary biosensors. We place particular emphasis on elucidating the pivotal advancements and recent breakthroughs in the realm of nanotechnology-facilitated biosensors for the detection of PCOS.
Collapse
Affiliation(s)
- Nidhi Chauhan
- School of Health Sciences and Technology, UPES, Dehradun, 248007, Uttarakhand, India.
| | - Sakshi Pareek
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector-125, Noida, 201313, India
| | - Warren Rosario
- School of Engineering, UPES, Dehradun, 248007, Uttarakhand, India
| | - Rachna Rawal
- Department of Physics & Astrophysics, University of Delhi, Delhi, 110007, India
| | - Utkarsh Jain
- School of Health Sciences and Technology, UPES, Dehradun, 248007, Uttarakhand, India
| |
Collapse
|
2
|
Vaziri Nezamdoust F, Hadinedoushan H, Ghasemi N. Association of cytotoxic T-lymphocyte-associated protein 4 polymorphisms with recurrent pregnancy loss: A case-control study. Int J Reprod Biomed 2023; 21:33-43. [PMID: 36875506 PMCID: PMC9982320 DOI: 10.18502/ijrm.v21i1.12664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 02/10/2023] Open
Abstract
Background A large proportion of cases of recurrent pregnancy loss (RPL) are associated with immunological factors. Objective This study investigated the association between single nucleotide polymorphisms of cytotoxic T-lymphocyte-associated protein (CTLA)-4 gene in women with a history of RPL compared to healthy women. Materials and Methods A case-control study was performed on 2 groups consisting of 120 healthy women with no history of abortion and at least one delivery (control) and 120 women with a history of 2 or more primary RPLs (case). In addition, 5 mL of peripheral blood sample was taken from all subjects. The frequencies of CTLA-4 rs3087243 and rs231775 polymorphisms were assayed by restriction fragment length polymorphism polymerase chain reaction and rs5742909 using the high-resolution melting real-time polymerase chain reaction method. Results The mean age of the women in the control and RPL groups were 30.03 ± 4.23 (range 21-37), and 28.64 ± 3.61 yr (range 20-35), respectively. Pregnancy loss numbers ranged between 2-6 in women with a history of RPL, and between 1 and 4 in the successful pregnancy group. Statistical analysis showed a significant difference between the genotypes of GG and AG in the 2 groups in rs3087243 polymorphism (OR 1.00 for GG genotype and OR 2.87 for AG genotype, p = 0.0043). No significant difference was observed in the genotype frequencies of rs231775 and rs5742909 polymorphisms, of the 2 groups (p = 0.37, and p = 0.095), respectively. Conclusion Our findings indicated that CTLA-4 polymorphism, rs3087243, might be associated with a risk of RPL in Iranian women.
Collapse
Affiliation(s)
| | - Hossein Hadinedoushan
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nasrin Ghasemi
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
3
|
Sinha N, Roy S, Huang B, Wang J, Padmanabhan V, Sen A. Developmental programming: prenatal testosterone-induced epigenetic modulation and its effect on gene expression in sheep ovary†. Biol Reprod 2021; 102:1045-1054. [PMID: 31930385 DOI: 10.1093/biolre/ioaa007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/19/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
Maternal perturbations or sub-optimal conditions during fetal development can predispose the offspring to diseases in adult life. Animal and human studies show that prenatal androgen excess may be an underlying cause of polycystic ovary syndrome (PCOS) later in life. In women, PCOS is a common fertility disorder with comorbid metabolic dysfunction. Here, using a sheep model of PCOS phenotype, we elucidate the epigenetic changes induced by prenatal (30-90 day) testosterone (T) treatment and its effect on gene expression in fetal day 90 (D90) and adult year 2 (Y2) ovaries. RNA-seq study shows 65 and 99 differentially regulated genes in prenatal T-treated fetal and adult ovaries, respectively. Interestingly, there were no differences in gene inducing histone marks H3K27ac, H3K9ac, and H3K4me3 or in gene silencing marks, H3K27me3 and H3K9me3 in the fetal D90 ovaries of control and excess T-exposed fetuses. In contrast, except for H3K4me3 and H3K27me3, all the other histone marks were upregulated in the prenatal T-treated adult Y2 ovary. Chromatin immunoprecipitation (ChIP) studies in adult Y2 ovaries established a direct relationship between the epigenetic modifications with the upregulated and downregulated genes obtained from RNA-seq. Results show increased gene inducing marks, H3K27ac and H3K9ac, on the promoter region of upregulated genes while gene silencing mark, H3K9me3, was also significantly increased on the downregulated genes. This study provides a mechanistic insight into prenatal T-induced developmental programming and its effect on ovarian gene expression that may contribute to reproductive dysfunction and development of PCOS in adult life.
Collapse
Affiliation(s)
- Niharika Sinha
- Department of Animal Sciences, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| | - Sambit Roy
- Department of Animal Sciences, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| | - Binbin Huang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Jianrong Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | | | - Aritro Sen
- Department of Animal Sciences, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
4
|
Investigation of the Correlation between Graves' Ophthalmopathy and CTLA4 Gene Polymorphism. J Clin Med 2019; 8:jcm8111842. [PMID: 31684013 PMCID: PMC6912222 DOI: 10.3390/jcm8111842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 11/16/2022] Open
Abstract
Graves’ disease (GD) is an autoimmune inflammatory disease, and Graves’ ophthalmopathy (GO) occurs in 25–50% of patients with GD. Several susceptible genes were identified to be associated with GO in some genetic analysis studies, including the immune regulatory gene CTLA4. We aimed to find out the correlation of CTLA4 gene polymorphism and GO. A total of 42 participants were enrolled in this study, consisting of 22 patients with GO and 20 healthy controls. Chi-square or Fisher’s exact test were used to appraise the association between Graves’ ophthalmopathy and CTLA4 single nucleotide polymorphisms (SNPs). All regions of CTLA4 including promoter, exon and 3’UTR were investigated. There was no nucleotide substitution in exon 2 and exon 3 of CTLA4 region, and the allele frequencies of CTLA4 polymorphisms had no significant difference between patients with GO and controls. However, the genotype frequency of “TT” genotype in rs733618 significantly differed between patients with GO and healthy controls (OR = 0.421, 95%CI: 0.290–0.611, p = 0.043), and the “CC” and “CT” genotype in rs16840252 were nearly significantly differed in genotype frequency (p = 0.052). Haplotype analysis showed that CTLA4 Crs733618Crs16840252 might increase the risk of GO (OR = 2.375, 95%CI: 1.636–3.448, p = 0.043). In conclusion, CTLA4 Crs733618Crs16840252 was found to be a potential marker for GO, and these haplotypes would be ethnicity-specific. Clinical application of CTLA4 Crs733618Crs16840252 in predicting GO in GD patients may be beneficial.
Collapse
|
5
|
Li Y, Chen C, Ma Y, Xiao J, Luo G, Li Y, Wu D. Multi-system reproductive metabolic disorder: significance for the pathogenesis and therapy of polycystic ovary syndrome (PCOS). Life Sci 2019; 228:167-175. [PMID: 31029778 DOI: 10.1016/j.lfs.2019.04.046] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/02/2019] [Accepted: 04/18/2019] [Indexed: 12/18/2022]
Abstract
Polycystic ovary syndrome (PCOS), a multisystem disease, is a major reason for female infertility around the world. It is no longer considered simply as a disease of ovary. Now researchers growing awareness of the multisystem features of this disease. PCOS has a higher relationship with metabolic disturbance and hypothalamic-pituitary-ovarian axis (HPOA) function disorders. This syndrome results in hyperandrogenemia (HA), hyperinsulinemia/insulin resistance (IR), increased estrone, luteinizing hormone (LH) and follicle-stimulating hormone (FSH) ratio imbalance, infertility, cardiovascular diseases, endometrial dysfunction, obesity, and including a litany of other health issues. Furthermore, PCOS has been garnered in recent times. Interventions like metformin, orlistat, hormonal contraceptives, GLP1 agonists, and VitD have been applied to ameliorate or reverse the pathological characterization of PCOS. Moreover, drug-combined therapy of PCOS is superior to single drug administration. This review will focus on the recent progress in pathogenesis and therapy of PCOS.
Collapse
Affiliation(s)
- Yan Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, PR China; Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan 410078, PR China
| | - Changye Chen
- Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang 421001, PR China
| | - Yan Ma
- Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang 421001, PR China
| | - Jiao Xiao
- Department of Endocrinology, The Affiliated Nanhua Hospital, University of South China, Hengyang 421002, PR China
| | - Guifang Luo
- Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang 421001, PR China
| | - Yukun Li
- Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, Hunan 421001, PR China.
| | - Daichao Wu
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, Hunan 421001, PR China; University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA.
| |
Collapse
|