1
|
Melkonian AV, Gilboa T, Walt DR. Disulfide Bonds Are Not Necessary for Intrinsic TNSALP Activity. J Phys Chem B 2023; 127:1744-1748. [PMID: 36795426 DOI: 10.1021/acs.jpcb.2c08392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Recent developments in single-molecule enzymology (SME) have allowed for the observation of subpopulations present in enzyme ensembles. Tissue-nonspecific alkaline phosphatase (TNSALP), a homodimeric monophosphate esterase central to bone metabolism, has become a model enzyme for SME studies. TNSALP contains two internal disulfide bonds that are critical for its effective dimerization; mutations in its disulfide bonding framework have been reported in patients with hypophosphatasia, a rare disease characterized by impaired bone and tooth mineralization. In this paper, we present the kinetics of these mutants and show that these disulfide bonds are not crucial for TNSALP enzymatic function. This surprising result reveals that the enzyme's active conformation does not rely on its disulfide bonds. We posit that the signs and symptoms seen in hypophosphatasia are likely not primarily due to impaired enzyme function, but rather decreased enzyme expression and trafficking.
Collapse
Affiliation(s)
- Arek V Melkonian
- Harvard Medical School, Boston, Massachusetts 02115, United States.,Brigham and Women's Hospital, Department of Pathology, Boston, Massachusetts 02115, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Tal Gilboa
- Harvard Medical School, Boston, Massachusetts 02115, United States.,Brigham and Women's Hospital, Department of Pathology, Boston, Massachusetts 02115, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - David R Walt
- Harvard Medical School, Boston, Massachusetts 02115, United States.,Brigham and Women's Hospital, Department of Pathology, Boston, Massachusetts 02115, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Gorvin CM. Genetic causes of neonatal and infantile hypercalcaemia. Pediatr Nephrol 2022; 37:289-301. [PMID: 33990852 PMCID: PMC8816529 DOI: 10.1007/s00467-021-05082-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/25/2021] [Accepted: 04/06/2021] [Indexed: 12/02/2022]
Abstract
The causes of hypercalcaemia in the neonate and infant are varied, and often distinct from those in older children and adults. Hypercalcaemia presents clinically with a range of symptoms including failure to thrive, poor feeding, constipation, polyuria, irritability, lethargy, seizures and hypotonia. When hypercalcaemia is suspected, an accurate diagnosis will require an evaluation of potential causes (e.g. family history) and assessment for physical features (such as dysmorphology, or subcutaneous fat deposits), as well as biochemical measurements, including total and ionised serum calcium, serum phosphate, creatinine and albumin, intact parathyroid hormone (PTH), vitamin D metabolites and urinary calcium, phosphate and creatinine. The causes of neonatal hypercalcaemia can be classified into high or low PTH disorders. Disorders associated with high serum PTH include neonatal severe hyperparathyroidism, familial hypocalciuric hypercalcaemia and Jansen's metaphyseal chondrodysplasia. Conditions associated with low serum PTH include idiopathic infantile hypercalcaemia, Williams-Beuren syndrome and inborn errors of metabolism, including hypophosphatasia. Maternal hypocalcaemia and dietary factors and several rare endocrine disorders can also influence neonatal serum calcium levels. This review will focus on the common causes of hypercalcaemia in neonates and young infants, considering maternal, dietary, and genetic causes of calcium dysregulation. The clinical presentation and treatment of patients with these disorders will be discussed.
Collapse
Affiliation(s)
- Caroline M. Gorvin
- Institute of Metabolism and Systems Research and Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Birmingham, B15 2TT UK ,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, B15 2TT UK
| |
Collapse
|
3
|
Abstract
Hypophosphatasia (HPP) is an inherited metabolic disease caused by loss-of-function mutations in the tissue non-specific alkaline phosphatase (TNAP) gene. Reduced activity of TNAP leads to the accumulation of its substrates, mainly inorganic pyrophosphate and pyridoxal-5′-phosphate, metabolic aberrations that largely explain the musculoskeletal and systemic features of the disease. More than 400 ALPL mutations, mostly missense, are reported to date, transmitted by either autosomal dominant or recessive mode. Severe disease is rare, with incidence ranging from 1:100,000 to 1:300,000 live births, while the estimated prevalence of the less severe adult form is estimated to be between 1:3100 to 1:508, in different countries in Europe. Presentation largely varies, ranging from death in utero to asymptomatic adults. In infants and children, clinical features include skeletal, respiratory and neurologic complications, while recurrent, poorly healing fractures, muscle weakness and arthropathy are common in adults. Persistently low serum alkaline phosphatase is the cardinal biochemical feature of the disease. Management requires a dedicated multidisciplinary team. In mild cases, treatment is usually symptomatic. Severe cases, with life-threating or debilitating complications, can be successfully treated with enzyme replacement therapy with asfotase alfa.
Collapse
|
4
|
Hypophosphatasia: A Unique Disorder of Bone Mineralization. Int J Mol Sci 2021; 22:ijms22094303. [PMID: 33919113 PMCID: PMC8122659 DOI: 10.3390/ijms22094303] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022] Open
Abstract
Hypophosphatasia (HPP) is a rare genetic disease characterized by a decrease in the activity of tissue non-specific alkaline phosphatase (TNSALP). TNSALP is encoded by the ALPL gene, which is abundantly expressed in the skeleton, liver, kidney, and developing teeth. HPP exhibits high clinical variability largely due to the high allelic heterogeneity of the ALPL gene. HPP is characterized by multisystemic complications, although the most common clinical manifestations are those that occur in the skeleton, muscles, and teeth. These complications are mainly due to the accumulation of inorganic pyrophosphate (PPi) and pyridoxal-5′-phosphate (PLP). It has been observed that the prevalence of mild forms of the disease is more than 40 times the prevalence of severe forms. Patients with HPP present at least one mutation in the ALPL gene. However, it is known that there are other causes that lead to decreased alkaline phosphatase (ALP) levels without mutations in the ALPL gene. Although the phenotype can be correlated with the genotype in HPP, the prediction of the phenotype from the genotype cannot be made with complete certainty. The availability of a specific enzyme replacement therapy for HPP undoubtedly represents an advance in therapeutic strategy, especially in severe forms of the disease in pediatric patients.
Collapse
|
5
|
Sawamoto K, Álvarez JV, Herreño AM, Otero-Espinar FJ, Couce ML, Alméciga-Díaz CJ, Tomatsu S. Bone-Specific Drug Delivery for Osteoporosis and Rare Skeletal Disorders. Curr Osteoporos Rep 2020; 18:515-525. [PMID: 32845464 PMCID: PMC7541793 DOI: 10.1007/s11914-020-00620-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW The skeletal system provides an important role to support body structure and protect organs. The complexity of its architecture and components makes it challenging to deliver the right amount of the drug into bone regions, particularly avascular cartilage lesions. In this review, we describe the recent advance of bone-targeting methods using bisphosphonates, polymeric oligopeptides, and nanoparticles on osteoporosis and rare skeletal diseases. RECENT FINDINGS Hydroxyapatite (HA), a calcium phosphate with the formula Ca10(PO4)6(OH)2, is a primary matrix of bone mineral that includes a high concentration of positively charged calcium ion and is found only in the bone. This unique feature makes HA a general targeting moiety to the entire skeletal system. We have applied bone-targeting strategy using acidic amino acid oligopeptides into lysosomal enzymes, demonstrating the effects of bone-targeting enzyme replacement therapy and gene therapy on bone and cartilage lesions in inherited skeletal disorders. Virus or no-virus gene therapy using techniques of engineered capsid or nanomedicine has been studied preclinically for skeletal diseases. Efficient drug delivery into bone lesions remains an unmet challenge in clinical practice. Bone-targeting therapies based on gene transfer can be potential as new candidates for skeletal diseases.
Collapse
Affiliation(s)
- Kazuki Sawamoto
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - J Víctor Álvarez
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | | | - Francisco J Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria L Couce
- Department of CC Foren. An. Pat, Gin. and Obst. and Paed. Neonatology Service, Metabolic Unit, University Clinic Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA.
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan.
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
- Department of Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Rd., Wilmington, DE, 19899-0269, USA.
| |
Collapse
|
6
|
Bangura A, Wright L, Shuler T. Hypophosphatasia: Current Literature for Pathophysiology, Clinical Manifestations, Diagnosis, and Treatment. Cureus 2020; 12:e8594. [PMID: 32676235 PMCID: PMC7362651 DOI: 10.7759/cureus.8594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Hypophosphatasia (HPP) is a rare inherited bone disorder identified by impaired bone mineralization. There are seven subtypes of HPP mainly characterized by their age of onset. These subtypes consist of perinatal (prenatal) benign, perinatal lethal, infantile, childhood, adult, odontohypophosphatasia, and pseudohypophosphatasia. Due to limited awareness of the condition, either misdiagnosis or delayed diagnosis is common. Furthermore, the condition is frequently treated with contraindicated drugs. This literature illustrates the most recent findings on the etiology, pathophysiology, clinical manifestations, diagnosing, and treatment for HPP and its subtypes. The etiology of the disease consists of loss-of-function mutations of the ALPL gene on chromosome one, which encodes for tissue nonspecific isoenzyme of alkaline phosphatase (TNAP). A decrease of TNAP reduces inorganic phosphate (Pi) for bone mineralization and allows for an increase in inorganic pyrophosphate (PPi) and phosphorylated osteopontin (p-OPN), which further reduces bone mineralization. The combination of these processes softens bone and mediates a clinical presentation similar to rickets/osteomalacia. HPP has an additional wide range of clinical features depending on its subtype. Although a concrete diagnostic guideline has not yet been established, many studies have supported a similar method of identifying HPP. Clinical features, radiological findings, and/or biomarker levels of the disorder should raise suspicion and encourage the inclusion of HPP as a differential diagnosis. Biomarkers, especially alkaline phosphatase (ALP), are major contributors to diagnosis. However, genetic testing is done for definitive diagnosis. The primary treatment for HPP is the reintroduction of TNAP as a recombinant enzyme called asfotase alfa. There are additional pharmaceutical treatments and in some cases, surgical intervention may be indicated. Pharmaceutical therapies such as bisphosphonates, denosumab, potent antiresorptive agents, and vitamin D are contraindicated in adults with HPP. We hope to raise awareness for HPP in order to prevent delayed diagnosis or misdiagnosis. We plan to encourage appropriate care and avoid treatments that may be contraindicating. We also encourage the development of a diagnostic guideline that will promote a consistently favorable patient prognosis.
Collapse
Affiliation(s)
- Abdulai Bangura
- Department of Research, Trinity School of Medicine, Ratho Mill, VCT
| | - Lisa Wright
- Department of Orthopaedics, Carilion Clinic, Roanoke, USA
| | - Thomas Shuler
- Department of Orthopaedics, Carilion Clinic, Roanoke, USA
| |
Collapse
|
7
|
Schlesinger PH, Blair HC, Beer Stolz D, Riazanski V, Ray EC, Tourkova IL, Nelson DJ. Cellular and extracellular matrix of bone, with principles of synthesis and dependency of mineral deposition on cell membrane transport. Am J Physiol Cell Physiol 2019; 318:C111-C124. [PMID: 31532718 DOI: 10.1152/ajpcell.00120.2019] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bone differs from other connective tissues; it is isolated by a layer of osteoblasts that are connected by tight and gap junctions. This allows bone to create dense lamellar type I collagen, control pH, mineral deposition, and regulate water content forming a compact and strong structure. New woven bone formed after degradation of mineralized cartilage is rapidly degraded and resynthesized to impart structural order for local bone strength. Ossification is regulated by thickness of bone units and by patterning via bone morphogenetic receptors including activin, other bone morphogenetic protein receptors, transforming growth factor-β receptors, all part of a receptor superfamily. This superfamily interacts with receptors for additional signals in bone differentiation. Important features of the osteoblast environment were established using recent tools including osteoblast differentiation in vitro. Osteoblasts deposit matrix protein, over 90% type I collagen, in lamellae with orientation alternating parallel or orthogonal to the main stress axis of the bone. Into this organic matrix, mineral is deposited as hydroxyapatite. Mineral matrix matures from amorphous to crystalline hydroxyapatite. This process includes at least two-phase changes of the calcium-phosphate mineral as well as intermediates involving tropocollagen fibrils to form the bone composite. Beginning with initiation of mineral deposition, there is uncertainty regarding cardinal processes, but the driving force is not merely exceeding the calcium-phosphate solubility product. It occurs behind a epithelial-like layer of osteoblasts, which generate phosphate and remove protons liberated during calcium-phosphate salt deposition. The forming bone matrix is discontinuous from the general extracellular fluid. Required adjustment of ionic concentrations and water removal from bone matrix are important details remaining to be addressed.
Collapse
Affiliation(s)
| | - Harry C Blair
- Veterans Affairs Medical Center, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Donna Beer Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vladimir Riazanski
- Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Chicago, Illinois
| | - Evan C Ray
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Irina L Tourkova
- Veterans Affairs Medical Center, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Deborah J Nelson
- Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Chicago, Illinois
| |
Collapse
|
8
|
Bowden SA, Foster BL. Alkaline Phosphatase Replacement Therapy for Hypophosphatasia in Development and Practice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:279-322. [PMID: 31482504 DOI: 10.1007/978-981-13-7709-9_13] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hypophosphatasia (HPP) is an inherited disorder that affects bone and tooth mineralization characterized by low serum alkaline phosphatase. HPP is caused by loss-of-function mutations in the ALPL gene encoding the protein, tissue-nonspecific alkaline phosphatase (TNSALP). TNSALP is expressed by mineralizing cells of the skeleton and dentition and is associated with the mineralization process. Generalized reduction of activity of the TNSALP leads to accumulation of its substrates, including inorganic pyrophosphate (PPi) that inhibits physiological mineralization. This leads to defective skeletal mineralization, with manifestations including rickets, osteomalacia, fractures, and bone pain, all of which can result in multi-systemic complications with significant morbidity, as well as mortality in severe cases. Dental manifestations are nearly universal among affected individuals and feature most prominently premature loss of deciduous teeth. Management of HPP has been limited to supportive care until the introduction of a TNSALP enzyme replacement therapy (ERT), asfotase alfa (AA). AA ERT has proven to be transformative, improving survival in severely affected infants and increasing overall quality of life in children and adults with HPP. This chapter provides an overview of TNSALP expression and functions, summarizes HPP clinical types and pathologies, discusses early attempts at therapies for HPP, summarizes development of HPP mouse models, reviews design and validation of AA ERT, and provides up-to-date accounts of AA ERT efficacy in clinical trials and case reports, including therapeutic response, adverse effects, limitations, and potential future directions in therapy.
Collapse
Affiliation(s)
- S A Bowden
- Division of Endocrinology, Department of Pediatrics, Nationwide Children's Hospital/The Ohio State University College of Medicine, Columbus, OH, USA.
| | - B L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|