1
|
Wong SH, Liou YM, Yang JJ, Lee IC. KCNQ2 mutations cause unique neonatal behavior arrests without motor seizures: Functional characterization. Epilepsy Behav 2024; 156:109798. [PMID: 38788659 DOI: 10.1016/j.yebeh.2024.109798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/15/2024] [Accepted: 04/14/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVE KCNQ2 gene mutation usually manifests as neonatal seizures in the first week of life. Nonsense mutations cause a unique self-limited familial neonatal epilepsy (SLFNE), which is radically different from developmental epileptic encephalopathy (DEE). However, the exact underlying mechanisms remain unclear. METHODS The proband, along with their mother and grandmother, carried the c.1342C > T (p.Arg448Ter) mutation in the KCNQ2 gene. The clinical phenotypes, electroencephalography (EEG) findings, and neurodevelopmental outcomes were comprehensively surveyed. The mutant variants were transfected into HEK293 cells to investigate functional changes. RESULTS The proband exhibited behavior arrests, autonomic and non-motor neonatal seizures with changes in heart rate and respiration. EEG exhibited focal sharp waves. Seizures were remitted after three months of age. The neurodevelopmental outcomes at three years of age were unremarkable. A functional study demonstrated that the currents of p.Arg448Ter were non-functional in homomeric p.Arg448Ter compared with that of the KCNQ2 wild type. However, the current density and V1/2 exhibited significant improvement and close to that of the wild-type after transfection with heteromeric KCNQ2 + p.Arg448Ter and KCNQ2 + KCNQ3 + p.Arg448Ter respectively. Channel expression on the cell membrane was not visible after homomeric transfection, but not after heteromeric transfection. Retigabine did not affect homomeric p.Arg448Ter but improved heteromeric p. Arg448Ter + KCNQ2 and heteromeric KCNQ2 + Arg448Ter + KCNQ3. CONCLUSIONS The newborn carrying the p. Arg448Ter mutation presented frequent behavioral arrests, autonomic, and non-motor neonatal seizures. This unique pattern differs from KCNQ2 seizures, which typically manifest as motor seizures. Although p.Arg448Ter is a non-sense decay, the functional study demonstrated an almost-full compensation mechanism after transfection of heteromeric KCNQ2 and KCNQ3.
Collapse
Affiliation(s)
- Swee-Hee Wong
- Division of Pediatric Neurology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ying-Ming Liou
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan; The iEGG and Animal Biotechnology Center, Rong Hsing Research Center for Translational Medicine, Natinal Chung Hsing University, Taichung 40227, Taiwan
| | - Jiann-Jou Yang
- Genetics Laboratory and Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Inn-Chi Lee
- Division of Pediatric Neurology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
2
|
Krishna S, Fasaludeen A, Jose M, Banerjee M, Sundaram S, Radhakrishnan A, Menon RN. Impact of variant subtype on electro-clinical phenotype of Dravet syndrome- a South Indian cohort study. Seizure 2024; 115:81-86. [PMID: 38232648 DOI: 10.1016/j.seizure.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024] Open
Abstract
OBJECTIVE We aimed to compare the electroclinical correlates of truncating and missense variants of SCN1A variants in children with Dravet syndrome (DS) and to determine phenotypic features in relation to variants identified and seizure outcomes. METHODS A single center prospective study was carried out on a South Indian cohort. Patients below 18 years of age who met the clinical criteria for DS who had undergone genetic testing and completed a minimum of one year follow up were included. We compared the differences in clinical profile, seizure outcome, developmental characteristics and anti-seizure medication (ASM) responsiveness profiles between patients with missense and truncating variants. RESULTS Out of a total of 3967 children with drug-resistant epilepsy during the period 2015-2021, 49 patients who fulfilled the inclusion criteria were studied. Thirty-seven had positive genetic tests, out of which 29 were SCN1A variants and 9 were other novel variants. The proportion of missense (14; 48.3%) and truncating SCN1A variants (15; 51.7%) was similar. A significant trend for developing multiple seizure types was noted among children with truncating variants (p = 0.035) and seizure freedom was more likely among children with missense variants (p = 0.042). All patients with truncating variants had ASM resistant epilepsy (p = 0.020). Developmental outcomes did not differ between the variant subtypes. CONCLUSION Our results show that children harbouring missense variants demonstrated a significantly lower propensity for multiple seizure subtypes and a higher proportion with seizure freedom. However developmental implications appear to be independent of variant subtype.
Collapse
Affiliation(s)
- S Krishna
- R Madhavan Nayar Centre for Comprehensive Epilepsy Care, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Alfiya Fasaludeen
- R Madhavan Nayar Centre for Comprehensive Epilepsy Care, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Manna Jose
- R Madhavan Nayar Centre for Comprehensive Epilepsy Care, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Moinak Banerjee
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Soumya Sundaram
- Comprehensive Care Centre for Neuodevelopmental Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Ashalatha Radhakrishnan
- R Madhavan Nayar Centre for Comprehensive Epilepsy Care, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Ramshekhar N Menon
- R Madhavan Nayar Centre for Comprehensive Epilepsy Care, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India; Comprehensive Care Centre for Neuodevelopmental Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India.
| |
Collapse
|
3
|
Lyons EL, Watson D, Alodadi MS, Haugabook SJ, Tawa GJ, Hannah-Shmouni F, Porter FD, Collins JR, Ottinger EA, Mudunuri US. Rare disease variant curation from literature: assessing gaps with creatine transport deficiency in focus. BMC Genomics 2023; 24:460. [PMID: 37587458 PMCID: PMC10433598 DOI: 10.1186/s12864-023-09561-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Approximately 4-8% of the world suffers from a rare disease. Rare diseases are often difficult to diagnose, and many do not have approved therapies. Genetic sequencing has the potential to shorten the current diagnostic process, increase mechanistic understanding, and facilitate research on therapeutic approaches but is limited by the difficulty of novel variant pathogenicity interpretation and the communication of known causative variants. It is unknown how many published rare disease variants are currently accessible in the public domain. RESULTS This study investigated the translation of knowledge of variants reported in published manuscripts to publicly accessible variant databases. Variants, symptoms, biochemical assay results, and protein function from literature on the SLC6A8 gene associated with X-linked Creatine Transporter Deficiency (CTD) were curated and reported as a highly annotated dataset of variants with clinical context and functional details. Variants were harmonized, their availability in existing variant databases was analyzed and pathogenicity assignments were compared with impact algorithm predictions. 24% of the pathogenic variants found in PubMed articles were not captured in any database used in this analysis while only 65% of the published variants received an accurate pathogenicity prediction from at least one impact prediction algorithm. CONCLUSIONS Despite being published in the literature, pathogenicity data on patient variants may remain inaccessible for genetic diagnosis, therapeutic target identification, mechanistic understanding, or hypothesis generation. Clinical and functional details presented in the literature are important to make pathogenicity assessments. Impact predictions remain imperfect but are improving, especially for single nucleotide exonic variants, however such predictions are less accurate or unavailable for intronic and multi-nucleotide variants. Developing text mining workflows that use natural language processing for identifying diseases, genes and variants, along with impact prediction algorithms and integrating with details on clinical phenotypes and functional assessments might be a promising approach to scale literature mining of variants and assigning correct pathogenicity. The curated variants list created by this effort includes context details to improve any such efforts on variant curation for rare diseases.
Collapse
Affiliation(s)
- Erica L Lyons
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Daniel Watson
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Mohammad S Alodadi
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Sharie J Haugabook
- Division of Preclinical Innovation, Therapeutic Development Branch, Therapeutics for Rare and Neglected Diseases (TRND) Program, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gregory J Tawa
- Division of Preclinical Innovation, Therapeutic Development Branch, Therapeutics for Rare and Neglected Diseases (TRND) Program, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fady Hannah-Shmouni
- Division of Translational Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Forbes D Porter
- Division of Translational Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jack R Collins
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Elizabeth A Ottinger
- Division of Preclinical Innovation, Therapeutic Development Branch, Therapeutics for Rare and Neglected Diseases (TRND) Program, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Uma S Mudunuri
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| |
Collapse
|
4
|
Investigation of MicroRNA-134 as a Target against Seizures and SUDEP in a Mouse Model of Dravet Syndrome. eNeuro 2022; 9:ENEURO.0112-22.2022. [PMID: 36240080 PMCID: PMC9522462 DOI: 10.1523/eneuro.0112-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/31/2022] [Accepted: 08/10/2022] [Indexed: 12/15/2022] Open
Abstract
Dravet syndrome (DS) is a catastrophic form of pediatric epilepsy mainly caused by noninherited mutations in the SCN1A gene. DS patients suffer severe and life-threatening focal and generalized seizures which are often refractory to available anti-seizure medication. Antisense oligonucleotides (ASOs) based approaches may offer treatment opportunities in DS. MicroRNAs are short noncoding RNAs that play a key role in brain structure and function by post-transcriptionally regulating gene expression, including ion channels. Inhibiting miRNA-134 (miR-134) using an antimiR ASO (Ant-134) has been shown to reduce evoked seizures in juvenile and adult mice and reduce epilepsy development in models of focal epilepsy. The present study investigated the levels of miR-134 and whether Ant-134 could protect against hyperthermia-induced seizures, spontaneous seizures and mortality (SUDEP) in F1.Scn1a(+/-)tm1kea mice. At P17, animals were intracerebroventricular injected with 0.1-1 nmol of Ant-134 and subject to a hyperthermia challenge at postnatal day (P)18. A second cohort of P21 F1.Scn1a(+/-)tm1kea mice received Ant-134 and were followed by video and EEG monitoring until P28 to track the incidence of spontaneous seizures and SUDEP. Hippocampal and cortical levels of miR-134 were similar between wild-type (WT) and F1.Scn1a(+/-)tm1kea mice. Moreover, Ant-134 had no effect on hyperthermia-induced seizures, spontaneous seizures and SUDEP incidence were unchanged in Ant-134-treated DS mice. These findings suggest that targeting miR-134 does not have therapeutic applications in DS.
Collapse
|
5
|
Phenotypic and Genotypic Spectrum of Early-Onset Developmental and Epileptic Encephalopathies-Data from a Romanian Cohort. Genes (Basel) 2022; 13:genes13071253. [PMID: 35886038 PMCID: PMC9322987 DOI: 10.3390/genes13071253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Early-onset developmental epileptic encephalopathy (DEE) refers to an age-specific, diverse group of epilepsy syndromes with electroclinical anomalies that are associated with severe cognitive, behavioral, and developmental impairments. Genetic DEEs have heterogeneous etiologies. This study includes 36 Romanian patients referred to the Regional Centre for Medical Genetics Dolj for genetic testing between 2017 and 2020. The patients had been admitted to and clinically evaluated at Doctor Victor Gomoiu Children’s Hospital and Prof. Dr. Alexandru Obregia Psychiatry Hospital in Bucharest. Panel testing was performed using the Illumina® TruSight™ One “clinical exome” (4811 genes), and the analysis focused on the known genes reported in DEEs and clinical concordance. The overall diagnostic rate was 25% (9/36 cases). Seven cases were diagnosed with Dravet syndrome (likely pathogenic/pathogenic variants in SCN1A) and two with Genetic Epilepsy with Febrile Seizures Plus (SCN1B). For the diagnosed patients, seizure onset was <1 year, and the seizure type was generalized tonic-clonic. Four additional plausible variants of unknown significance in SCN2A, SCN9A, and SLC2A1 correlated with the reported phenotype. Overall, we are reporting seven novel variants. Comprehensive clinical phenotyping is crucial for variant interpretation. Genetic assessment of patients with severe early-onset DEE can be a powerful diagnostic tool for clinicians, with implications for the management and counseling of the patients and their families.
Collapse
|
6
|
The clinical, economic, and humanistic burden of Dravet syndrome - A systematic literature review. Epilepsy Behav 2022; 130:108661. [PMID: 35334258 DOI: 10.1016/j.yebeh.2022.108661] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
Dravet syndrome (DS) is a developmental and epileptic encephalopathy with evolving disease course as individuals age. In recent years, the treatment landscape of DS has changed considerably, and a comprehensive systematic review of the contemporary literature is lacking. Here we synthesized published evidence on the occurrence of clinical impacts by age, the economic and humanistic (health-related quality-of-life [HRQoL]) burden, and health state utility. We provide an evidence-based, contemporary visualization of the clinical manifestations, highlighting that DS is not limited to seizures; non-seizure manifestations appear early in life and increase over time, contributing significantly to the economic and humanistic burden of disease. The primary drivers of HRQoL in DS include seizure severity, cognition, and motor and behavioral problems; in turn, these directly affect caregivers through the extent of assistance required and consequent impact on activities of daily living. Unsurprisingly, costs are driven by seizure-related events, hospitalizations, and in-home medical care visits. This systematic review highlights a paucity of longitudinal data; most studies meeting inclusion criteria were cross-sectional or had short follow-up. Nonetheless, available data illustrate the substantial impact on individuals, their families, and healthcare systems and establish the need for novel therapies to address the complex spectrum of DS manifestations.
Collapse
|
7
|
Martin P, Kümmerle A. Motor and behavioral phenotype of Dravet syndrome in adulthood. Epilepsy Behav 2022; 129:108601. [PMID: 35203016 DOI: 10.1016/j.yebeh.2022.108601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 11/24/2022]
Abstract
In a comparative cross-sectional study, 26 adult individuals with clinically typical, genetically confirmed Dravet syndrome (DS) and an equal number of individuals with early onset, problematic epilepsy, and intellectual disability (ID) of comparable severity were included. The aim of the study was to find out whether patients with DS could be clearly distinguished from the comparison group with regard to neurological and behavioral symptoms. Significant differences were found in that individuals with DS clearly more frequently exhibited a symptom cluster characterized by bradykinesia, hypomimia, hypophonia, (spastic) increased muscle tone, ataxia, sthenic perseveration, and a special interest in colors. To these symptoms must be added, according to the findings of previous examinations, mastication, camptocormia/antecollis on the one hand, and the tendency to visual hallucinations on the other hand, in order to define one neuropsychiatric phenotype of DS in adulthood. To these symptoms must be added, according to the findings of previous investigations, crouch gait with camptocormia/antecollis on the one hand, and the tendency to visual hallucinations on the other hand, in order to define one outlined neuropsychiatric phenotype of DS in adulthood.
Collapse
Affiliation(s)
- Peter Martin
- Séguin-Clinic for Persons with Severe Intellectual Disability, Epilepsy Centre Kork, Germany; Medical Faculty, University of Freiburg, Germany.
| | | |
Collapse
|
8
|
Marco-Hernández AV, Caro-Llopis A, Rubio Sánchez P, Martínez Martínez JC, Tomás Vila M, Monfort S, Martínez F. Extending the Phenotype Related to SCN1A Gene: Arthrogryposis, Movement Disorders, and Malformations of Cortical Development. J Child Neurol 2022; 37:340-350. [PMID: 35072530 DOI: 10.1177/08830738211072694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Expand the knowledge about the clinical phenotypes associated with pathogenic or likely pathogenic variants in the SCN1A gene. METHODS The study was carried out in 15 patients with SCN1A variants. The complete phenotype of the patients was evaluated. A systematic search was carried out in the scientific literature for those unexpected symptoms. RESULTS Ten patients showed a missense variant, whereas the remaining showed different loss-of-function variants. Twelve (80%) had Dravet syndrome. Two (13.3%) had Epilepsy with febrile seizures plus. Three (20%) presented an atypical phenotype. One of them was developmental and epileptic encephalopathy with arthrogryposis, the other Dravet syndrome and movement disorder, and lastly one patient had Dravet syndrome and malformations of the cortical development. CONCLUSION The exhaustive assessment of patients with pathogenic alterations detected in massive sequencing can help us to expand the phenotype, understand the etiopathogenesis associated with each genetic abnormality, and thus improve the prognosis and management of future patients.
Collapse
Affiliation(s)
| | | | - Pilar Rubio Sánchez
- Neurophysiology Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Miguel Tomás Vila
- Neuropediatric Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Sandra Monfort
- Genetics Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Francisco Martínez
- Genetics Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
9
|
May HJ, Fasheun JA, Bain JM, Baugh EH, Bier LE, Revah-Politi A, Roye DP, Goldstein DB, Carmel JB. Genetic testing in individuals with cerebral palsy. Dev Med Child Neurol 2021; 63:1448-1455. [PMID: 34114234 PMCID: PMC9277698 DOI: 10.1111/dmcn.14948] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 12/28/2022]
Abstract
AIM To determine which patients with cerebral palsy (CP) should undergo genetic testing, we compared the rate of likely causative genetic variants from whole-exome sequencing in individuals with and without environmental risk factors. METHOD Patients were part of a convenience and physician-referred cohort recruited from a single medical center, and research whole-exome sequencing was completed. Participants were evaluated for the following risk factors: extreme preterm birth, brain bleed or stroke, birth asphyxia, brain malformations, and intrauterine infection. RESULTS A total of 151 unrelated individuals with CP (81 females, 70 males; mean age 25y 7mo [SD 17y 5mo], range 3wks-72y) participated. Causative genetic variants were identified in 14 participants (9.3%). There was no significant difference in diagnostic rate between individuals with risk factors (10 out of 123; 8.1%) and those without (4 out of 28; 14.3%) (Fisher's exact p=0.3). INTERPRETATION While the rate of genetic diagnoses among individuals without risk factors was higher than those with risk factors, the difference was not statistically significant at this sample size. The identification of genetic diagnoses in over 8% of cases with risk factors suggests that these might confer susceptibility to environmental factors, and that further research should include individuals with risk factors. What this paper adds There is no significant difference in diagnostic rate between individuals with and without risk factors. Genetic variants may confer susceptibility to environmental risk factors. Six causative variants were identified in genes not previously associated with cerebral palsy. Global developmental delay/intellectual disability is positively associated with a genetic etiology. Extreme preterm birth, stroke/brain hemorrhage, and older age are negatively associated with a genetic etiology.
Collapse
Affiliation(s)
- Halie J. May
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY
| | - Jennifer A. Fasheun
- Weinberg Family Cerebral Palsy Center, Department of Orthopedics, Columbia University Irving Medical Center, New York, NY
| | - Jennifer M. Bain
- Department of Neurology, Columbia University Irving Medical Center, New York, NY
| | - Evan H. Baugh
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY
| | - Louise E. Bier
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY
| | - Anya Revah-Politi
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - David P. Roye
- Weinberg Family Cerebral Palsy Center, Department of Orthopedics, Columbia University Irving Medical Center, New York, NY
| | - David B. Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY
| | - Jason B. Carmel
- Weinberg Family Cerebral Palsy Center, Department of Orthopedics, Columbia University Irving Medical Center, New York, NY
- Department of Neurology, Columbia University Irving Medical Center, New York, NY
| | - NYP/CUIMC Genomics Team
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY
- Weinberg Family Cerebral Palsy Center, Department of Orthopedics, Columbia University Irving Medical Center, New York, NY
- Department of Neurology, Columbia University Irving Medical Center, New York, NY
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
- Division of Clinical Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
10
|
Specchio N, Curatolo P. Developmental and epileptic encephalopathies: what we do and do not know. Brain 2021; 144:32-43. [PMID: 33279965 DOI: 10.1093/brain/awaa371] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/16/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Developmental encephalopathies, including intellectual disability and autistic spectrum disorder, are frequently associated with infant epilepsy. Epileptic encephalopathy is used to describe an assumed causal relationship between epilepsy and developmental delay. Developmental encephalopathies pathogenesis more independent from epilepsy is supported by the identification of several gene variants associated with both developmental encephalopathies and epilepsy, the possibility for gene-associated developmental encephalopathies without epilepsy, and the continued development of developmental encephalopathies even when seizures are controlled. Hence, 'developmental and epileptic encephalopathy' may be a more appropriate term than epileptic encephalopathy. This update considers the best studied 'developmental and epileptic encephalopathy' gene variants for illustrative support for 'developmental and epileptic encephalopathy' over epileptic encephalopathy. Moreover, the interaction between epilepsy and developmental encephalopathies is considered with respect to influence on treatment decisions. Continued research in genetic testing will increase access to clinical tests, earlier diagnosis, better application of current treatments, and potentially provide new molecular-investigated treatments.
Collapse
Affiliation(s)
- Nicola Specchio
- Department of Neuroscience, Bambino Gesu Children's Hospital, IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies EpiCARE, Piazza S, 00165 Rome, Italy
| | - Paolo Curatolo
- Systems Medicine Department, Child Neurology and Psychiatry Unit, Tor Vergata University Hospital of Rome, 00133 Rome, Italy
| |
Collapse
|
11
|
Sullo F, Pasquetti E, Patanè F, Lo Bianco M, Marino SD, Polizzi A, Falsaperla R, Ruggieri M, Zanghì A, Praticò AD. SCN1A and Its Related Epileptic Phenotypes. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractEpilepsy is one of the most common neurological disorders, with a lifetime incidence of 1 in 26. Approximately two-thirds of epilepsy has a substantial genetic component in its etiology. As a result, simultaneous screening for mutations in multiple genes and performing whole exome sequencing (WES) are becoming very frequent in the clinical evaluation of children with epilepsy. In this setting, mutations in voltage-gated sodium channel (SCN) α-subunit genes are the most commonly identified cause of epilepsy, with sodium channel genes (i.e., SCN1A, SCN2A, SCN8A) being the most frequently identified causative genes. SCN1A mutations result in a wide spectrum of epilepsy phenotypes ranging from simple febrile seizures to Dravet syndrome, a severe epileptic encephalopathy. In case of mutation of SCN1A, it is also possible to observe behavioral alterations, such as impulsivity, inattentiveness, and distractibility, which can be framed in an attention deficit hyperactivity disorder (ADHD) like phenotype. Despite more than 1,200 SCN1A mutations being reported, it is not possible to assess a clear phenotype–genotype correlations. Treatment remains a challenge and seizure control is often partial and transitory.
Collapse
Affiliation(s)
- Federica Sullo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Elisa Pasquetti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesca Patanè
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Manuela Lo Bianco
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Simona D. Marino
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Martino Ruggieri
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
12
|
Bertuccelli M, Verheyen K, Hallemans A, Sander JW, Ragona F, Bisiacchi P, Masiero S, Del Felice A. Deconstructing Dravet syndrome neurocognitive development: A scoping review. Epilepsia 2021; 62:874-887. [PMID: 33646591 DOI: 10.1111/epi.16844] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 11/27/2022]
Abstract
Dravet syndrome (DS) is a rare severe epilepsy syndrome associated with slowed psychomotor development and behavioral disorders from the second year onward in a previously seemingly normal child. Among cognitive impairments, visuospatial, sensorimotor integration, and expressive language deficits are consistently reported. There have been independent hypotheses to deconstruct the typical cognitive development in DS (dorsal stream vulnerability, cerebellar-like pattern, sensorimotor integration deficit), but an encompassing framework is still lacking. We performed a scoping review of existing evidence to map the current understanding of DS cognitive and behavioral developmental profiles and to summarize the evidence on suggested frameworks. We searched PubMed, Scopus, PsycInfo, and MEDLINE to identify reports focusing on cognitive deficits and/or behavioral abnormalities in DS published between 1978 and March 15, 2020. We followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines. Twenty-one reports were selected and tabulated by three independent reviewers based on predefined data extraction and eligibility forms. Eighteen reports provided assessments of global intelligence quotients with variable degrees of cognitive impairment. Eleven reports analyzed single subitems contribution to global cognitive scores: these reports showed consistently larger impairment in performance scales compared to verbal ones. Studies assessing specific cognitive functions demonstrated deterioration of early visual processing, fine and gross motor abilities, visuomotor and auditory-motor integration, spatial processing, visuo-attentive abilities, executive functions, and expressive language. Behavioral abnormalities, reported from 14 studies, highlighted autistic-like traits and attention and hyperactivity disorders, slightly improving with age. The cognitive profile in DS and some behavioral and motor abnormalities may be enclosed within a unified theoretical framework of the three main hypotheses advanced: a pervasive sensorimotor integration deficit, encompassing an occipito-parietofrontal circuit (dorsal stream) dysfunction and a coexistent cerebellar deficit.
Collapse
Affiliation(s)
- Margherita Bertuccelli
- Department of Neuroscience, Section of Rehabilitation, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Karen Verheyen
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - Ann Hallemans
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- MOVANT, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - Josemir W Sander
- University College London Queen Square Institute of Neurology, National Institute for Health Research, University College London Hospitals Biomedical Research Centre, London, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Francesca Ragona
- Department of Pediatric Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico Foundation Neurological Institute C. Besta, Milano, Italy
| | - Patrizia Bisiacchi
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of General Psychology, University of Padova, Padova, Italy
| | - Stefano Masiero
- Department of Neuroscience, Section of Rehabilitation, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Alessandra Del Felice
- Department of Neuroscience, Section of Rehabilitation, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
13
|
Lalwani AM, Yilmaz A, Bisgin H, Ugur Z, Akyol S, Graham SF. The Biochemical Profile of Post-Mortem Brain from People Who Suffered from Epilepsy Reveals Novel Insights into the Etiopathogenesis of the Disease. Metabolites 2020; 10:metabo10060261. [PMID: 32585915 PMCID: PMC7345034 DOI: 10.3390/metabo10060261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023] Open
Abstract
Epilepsy not-otherwise-specified (ENOS) is one of the most common causes of chronic disorders impacting human health, with complex multifactorial etiology and clinical presentation. Understanding the metabolic processes associated with the disorder may aid in the discovery of preventive and therapeutic measures. Post-mortem brain samples were harvested from the frontal cortex (BA8/46) of people diagnosed with ENOS cases (n = 15) and age- and sex-matched control subjects (n = 15). We employed a targeted metabolomics approach using a combination of proton nuclear magnetic resonance (1H-NMR) and direct injection/liquid chromatography tandem mass spectrometry (DI/LC-MS/MS). We accurately identified and quantified 72 metabolites using 1H-NMR and 159 using DI/LC-MS/MS. Among the 212 detected metabolites, 14 showed significant concentration changes between ENOS cases and controls (p < 0.05; q < 0.05). Of these, adenosine monophosphate and O-acetylcholine were the most commonly selected metabolites used to develop predictive models capable of discriminating between ENOS and unaffected controls. Metabolomic set enrichment analysis identified ethanol degradation, butyrate metabolism and the mitochondrial beta-oxidation of fatty acids as the top three significantly perturbed metabolic pathways. We report, for the first time, the metabolomic profiling of postmortem brain tissue form patients who died from epilepsy. These findings can potentially expand upon the complex etiopathogenesis and help identify key predictive biomarkers of ENOS.
Collapse
Affiliation(s)
- Ashna M. Lalwani
- Department of Biochemistry and Molecular Biology, Hamilton College, 198 College Hill Rd, Clinton, NY 13323, USA;
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ali Yilmaz
- Department of Obstetrics and Gynecology, Beaumont Health System, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (A.Y.); (Z.U.)
- Oakland University-William Beaumont School of Medicine, 586 Pioneer Dr, Rochester, MI 48309, USA
- Beaumont Research Institute, Beaumont Health, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA;
| | - Halil Bisgin
- Department of Computer Science, Engineering, and Physics, University of Michigan-Flint, 303 E. Kearsley St, Flint, MI 48502, USA;
| | - Zafer Ugur
- Department of Obstetrics and Gynecology, Beaumont Health System, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (A.Y.); (Z.U.)
- Beaumont Research Institute, Beaumont Health, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA;
| | - Sumeyya Akyol
- Beaumont Research Institute, Beaumont Health, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA;
| | - Stewart Francis Graham
- Department of Obstetrics and Gynecology, Beaumont Health System, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (A.Y.); (Z.U.)
- Oakland University-William Beaumont School of Medicine, 586 Pioneer Dr, Rochester, MI 48309, USA
- Beaumont Research Institute, Beaumont Health, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA;
- Correspondence: ; Tel.: +1-248-551-2038
| |
Collapse
|
14
|
Customized multigene panels in epilepsy: the best things come in small packages. Neurogenetics 2019; 21:1-18. [PMID: 31834528 DOI: 10.1007/s10048-019-00598-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
Over the past 10 years, the increasingly important role played by next-generation sequencing panels in the genetic diagnosis of epilepsy has led to a growing list of gene variants and a plethora of new scientific data. To date, however, there is still no consensus on what constitutes the "ideal panel design," or on the most rational criteria for selecting the best candidates for gene-panel analysis, even though both might optimize the cost-benefit ratio and the diagnostic efficiency of customized gene panels. Even though more and more laboratories are adopting whole-exome sequencing as a first-tier diagnostic approach, interpreting, "in silico," a set of epilepsy-related genes remains difficult. In the light of these considerations, we performed a systematic review of the targeted gene panels for epilepsy already reported in the available scientific literature, with a view to identifying the best criteria for selecting patients for gene-panel analysis, and the best way to design an "ideal," gold-standard panel that includes all genes with an established role in epilepsy pathogenesis, as well as those that might help to guide decisions regarding specific medical interventions and treatments. Our analyses suggest that the usefulness and diagnostic power of customized gene panels for epilepsy may be greatest when these panels are confined to rationally selected, relatively small, pools of genes, and applied in more carefully selected epilepsy patients (those with complex forms of epilepsy). A panel containing 64 genes, which includes the 45 genes harboring a significant number of pathogenic variants identified in previous literature, the 32 clinically actionable genes, and the 21 ILAE (International League Against Epilepsy) recommended genes, may represent an "ideal" core set likely able to provide the highest diagnostic efficiency and cost-effectiveness and facilitate gene prioritization when testing patients with whole-exome/whole-genome sequencing.
Collapse
|
15
|
Buck ML, Goodkin HP. Stiripentol: A Novel Antiseizure Medication for the Management of Dravet Syndrome. Ann Pharmacother 2019; 53:1136-1144. [DOI: 10.1177/1060028019856008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Objective: To describe the pharmacology, efficacy, and safety of stiripentol in the treatment of refractory seizures in patients with Dravet syndrome. Data Sources: A search of the English language literature was conducted using PubMed and MEDLINE (1978 to April 2019) with the search terms stiripentol, Dravet syndrome, and refractory epilepsy. Other resources included article bibliographies, prescribing information, and relevant trials at https://clinicaltrials.gov/ . Study Selection and Data Extraction: All phase 1, 2, or 3 trials; observational studies; and retrospective studies were analyzed. Data Synthesis: In controlled studies, stiripentol has been shown to reduce seizure frequency by 50% or more in 40% to 70% of patients with Dravet syndrome. Reductions in seizure duration and episodes of status epilepticus have also been documented. Common adverse effects include somnolence and anorexia. Stiripentol inhibits the metabolism of clobazam and valproate, often requiring dose adjustment. Relevance to Patient Care and Clinical Practice: Stiripentol, a direct allosteric modulator of GABAA receptors, offers a novel approach to treatment in patients with Dravet syndrome, both with and without pathogenic variants of the sodium channel α-1 subunit gene, and potentially other refractory seizures. Although available outside the United States for a decade, it was only recently approved by the Food and Drug Administration for patients 2 years of age and older with Dravet syndrome taking clobazam. Conclusions: Stiripentol is an effective adjunctive therapy for reducing the frequency and duration of refractory seizures in patients with Dravet syndrome. Its role in the treatment of other refractory epilepsies requires further study.
Collapse
Affiliation(s)
- Marcia L. Buck
- University of Virginia Health System, Charlottesville, VA, USA
- University of Virginia School of Medicine, Charlottesville, VA, USA
| | | |
Collapse
|
16
|
Belousova ED, Sharkov AA. [Difficulties in the diagnosis, prognosis and treatment of genetic epileptic encephalopathies: the view of a neurologist]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:34-40. [PMID: 32207729 DOI: 10.17116/jnevro201911911234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Genetic epileptic encephalopathies are a rather wide spectrum of childhood epilepsies with onset of epilepsy in the first 1.5-2 years of life, regression or delayed psychomotor and speech development and 'massive' epileptiform activity on electroencephalogram (EEG). The review discusses the difficulties of choosing the optimal method of genetic examination, problems with the interpretation of the results obtained, the formulation of the diagnosis, the determination of the prognosis of the course and targeted therapy. It is emphasized that the interpretation of the identified genetic variants is not an easy task, requiring close interaction between specialists in molecular genetics, bioinformatics, neurology and clinical genetics. The possibilities of targeted treatment of genetic epileptic encephalopathies are still limited, but knowledge of the genetic cause of epilepsy allows making a more informed choice of the treatment.
Collapse
Affiliation(s)
- E D Belousova
- Veltischev Research and Clinical Institute of Pediatrics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - A A Sharkov
- Veltischev Research and Clinical Institute of Pediatrics, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|