1
|
Shi Q, Xue C, Zeng Y, Yuan X, Chu Q, Jiang S, Wang J, Zhang Y, Zhu D, Li L. Notch signaling pathway in cancer: from mechanistic insights to targeted therapies. Signal Transduct Target Ther 2024; 9:128. [PMID: 38797752 PMCID: PMC11128457 DOI: 10.1038/s41392-024-01828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Notch signaling, renowned for its role in regulating cell fate, organ development, and tissue homeostasis across metazoans, is highly conserved throughout evolution. The Notch receptor and its ligands are transmembrane proteins containing epidermal growth factor-like repeat sequences, typically necessitating receptor-ligand interaction to initiate classical Notch signaling transduction. Accumulating evidence indicates that the Notch signaling pathway serves as both an oncogenic factor and a tumor suppressor in various cancer types. Dysregulation of this pathway promotes epithelial-mesenchymal transition and angiogenesis in malignancies, closely linked to cancer proliferation, invasion, and metastasis. Furthermore, the Notch signaling pathway contributes to maintaining stem-like properties in cancer cells, thereby enhancing cancer invasiveness. The regulatory role of the Notch signaling pathway in cancer metabolic reprogramming and the tumor microenvironment suggests its pivotal involvement in balancing oncogenic and tumor suppressive effects. Moreover, the Notch signaling pathway is implicated in conferring chemoresistance to tumor cells. Therefore, a comprehensive understanding of these biological processes is crucial for developing innovative therapeutic strategies targeting Notch signaling. This review focuses on the research progress of the Notch signaling pathway in cancers, providing in-depth insights into the potential mechanisms of Notch signaling regulation in the occurrence and progression of cancer. Additionally, the review summarizes pharmaceutical clinical trials targeting Notch signaling for cancer therapy, aiming to offer new insights into therapeutic strategies for human malignancies.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shuwen Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
2
|
Souza VGP, Telkar N, Lam WL, Reis PP. Comprehensive Analysis of Lung Adenocarcinoma and Brain Metastasis through Integrated Single-Cell Transcriptomics. Int J Mol Sci 2024; 25:3779. [PMID: 38612588 PMCID: PMC11012108 DOI: 10.3390/ijms25073779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is a highly prevalent and lethal form of lung cancer, comprising approximately half of all cases. It is often diagnosed at advanced stages with brain metastasis (BM), resulting in high mortality rates. Current BM management involves complex interventions and conventional therapies that offer limited survival benefits with neurotoxic side effects. The tumor microenvironment (TME) is a complex system where cancer cells interact with various elements, significantly influencing tumor behavior. Immunotherapies, particularly immune checkpoint inhibitors, target the TME for cancer treatment. Despite their effectiveness, it is crucial to understand metastatic lung cancer and the specific characteristics of the TME, including cell-cell communication mechanisms, to refine treatments. Herein, we investigated the tumor microenvironment of brain metastasis from lung adenocarcinoma (LUAD-BM) and primary tumors across various stages (I, II, III, and IV) using single-cell RNA sequencing (scRNA-seq) from publicly available datasets. Our analysis included exploring the immune and non-immune cell composition and the expression profiles and functions of cell type-specific genes, and investigating the interactions between different cells within the TME. Our results showed that T cells constitute the majority of immune cells present in primary tumors, whereas microglia represent the most dominant immune cell type in BM. Interestingly, microglia exhibit a significant increase in the COX pathway. Moreover, we have shown that microglia primarily interact with oligodendrocytes and endothelial cells. One significant interaction was identified between DLL4 and NOTCH4, which demonstrated a relevant association between endothelial cells and microglia and between microglia and oligodendrocytes. Finally, we observed that several genes within the HLA complex are suppressed in BM tissue. Our study reveals the complex molecular and cellular dynamics of BM-LUAD, providing a path for improved patient outcomes with personalized treatments and immunotherapies.
Collapse
Affiliation(s)
- Vanessa G. P. Souza
- Molecular Oncology Laboratory, Experimental Research Unit, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Nikita Telkar
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Wan L. Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Patricia P. Reis
- Molecular Oncology Laboratory, Experimental Research Unit, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| |
Collapse
|
3
|
Ljubicic L, Janzic U, Unk M, Terglav AS, Mohorcic K, Seiwerth F, Bitar L, Badovinac S, Plestina S, Korsic M, Kukulj S, Samarzija M, Jakopovic M. Efficacy and safety of nintedanib and docetaxel in patients with previously treated lung non-squamous non-small cell lung cancer: a multicenter retrospective real-world analysis. Radiol Oncol 2023; 57:397-404. [PMID: 37665737 PMCID: PMC10476899 DOI: 10.2478/raon-2023-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/16/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND The standard first-line systemic treatment for patients with non-oncogene addicted advanced nonsquamous non-small cell lung cancer (NSCLC) is immunotherapy with immune checkpoint inhibitors (ICI) and/or chemotherapy (ChT). Therapy after failing ICI +/- ChT remains an open question, and docetaxel plus nintedanib represent a valid second line option. PATIENTS AND METHODS A multicenter retrospective trial of real-life treatment patterns and outcomes of patients with advanced lung adenocarcinoma treated with docetaxel plus nintedanib after the failure of ICI and/or ChT was performed. Patients from 2 Slovenian and 1 Croatian oncological center treated between June 2014 and August 2022 were enrolled. We assessed objective response (ORR), disease control rate (DCR), median progression free survival (PFS), median overall survival (OS), and safety profile of treatment. RESULTS There were 96 patients included in the analysis, with ORR of 18.8%, DCR of 57.3%, median PFS of 3.0 months (95% CI: 3.0-5.0 months), and a median OS of 8.0 months (95% CI: 7.0-10.0 months). The majority of patients (n = 47,49%) received docetaxel plus nintedanib as third-line therapy. The ORR for this subset of patients was 19.1%, with a DCR of 57.4%. The highest response rate was observed in patients who received second-line docetaxel plus nintedanib after first-line combination of ChT-ICI therapy (n = 24), with an ORR of 29.2% and DCR of 66.7% and median PFS of 4.0 months (95% CI: 3.0-8.0 months). Fifty-three patients (55.2%) experienced adverse events (AEs), most frequently gastrointestinal; diarrhea (n = 29, 30.2%), and increased liver enzyme levels (n = 17, 17.7%). CONCLUSIONS The combination of docetaxel and nintedanib can be considered an effective therapy option with an acceptable toxicity profile for patients with advanced NSCLC after the failure of ICI +/- ChT.
Collapse
Affiliation(s)
- Lidija Ljubicic
- Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Urska Janzic
- Medical Oncology Unit, University Clinic Golnik, Golnik, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Unk
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Division of Medical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Ana Sophie Terglav
- Division of Medical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Katja Mohorcic
- Medical Oncology Unit, University Clinic Golnik, Golnik, Slovenia
| | - Fran Seiwerth
- Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Lela Bitar
- Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Sonja Badovinac
- Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sanja Plestina
- Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marta Korsic
- Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Suzana Kukulj
- Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Miroslav Samarzija
- Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marko Jakopovic
- Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
4
|
Zhu YT, Wu SY, Yang S, Ying J, Tian L, Xu HL, Zhang HP, Yao H, Zhang WY, Jin QQ, Yang YT, Jiang XY, Zhang N, Yao S, Zhou SG, Chen G. Identification and validation of a novel anoikis-related signature for predicting prognosis and immune landscape in ovarian serous cystadenocarcinoma. Heliyon 2023; 9:e18708. [PMID: 37554782 PMCID: PMC10404752 DOI: 10.1016/j.heliyon.2023.e18708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Ovarian serous cystadenocarcinoma (OSC) is the most prevalent histological subtype of ovarian cancer (OV) and presents a serious threat to women's health. Anoikis is an essential component of metastasis, and tumor cells can get beyond it to become viable. The impact of anoikis on OSC, however, has only been the topic of a few studies. METHODS The mRNA sequencing and clinical information of OSC came from The Cancer Genome Atlas Target Genotype-Tissue Expression (TCGA TARGET GTEx) dataset. Anoikis-related genes (ARGs) were collected by Harmonizome and GeneCards websites. Centered on these ARGs, we used unsupervised consensus clustering to explore potential tumor typing and filtered hub ARGs to create a model of predictive signature for OSC patients. Furthermore, we presented clinical specialists with a novel nomogram based on ARGs, revealing the underlying clinical relevance of this signature. Finally, we explored the immune microenvironment among various risk groups. RESULTS We identified 24 ARGs associated with the prognosis of OSC and classified OSC patients into three subtypes, and the subtype with the best prognosis was more enriched in immune-related pathways. Seven ARGs (ARHGEF7, NOTCH4, CASP2, SKP2, PAK4, LCK, CCDC80) were chosen to establish a risk model and a nomogram that can provide practical clinical decision support. Risk scores were found to be an independent and significant prognostic factor in OSC patients. The CIBERSORTx result revealed an inflammatory microenvironment is different for risk groups, and the proportion of immune infiltrates of Macrophages M1 is negatively correlated with risk score (rs = -0.21, P < 0.05). Ultimately, quantitative reverse transcription polymerase chain reaction (RT-PCR) was utilized to validate the expression of the seven pivotal ARGs. CONCLUSION In this study, based on seven ARGs, a risk model and nomogram established can be used for risk stratification and prediction of survival outcomes in patients with OSC, providing a reliable reference for individualized therapy of OSC patients.
Collapse
Affiliation(s)
- Yu-Ting Zhu
- Department of Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, China
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui 230001, China
| | - Shuang-Yue Wu
- Department of Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, China
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui 230001, China
| | - Song Yang
- Department of Pain Treatment, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Jie Ying
- Department of Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, China
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui 230001, China
| | - Lu Tian
- Department of Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, China
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui 230001, China
| | - Hong-Liang Xu
- Department of Pathology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui 230001, China
| | - He-Ping Zhang
- Department of Pathology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui 230001, China
| | - Hui Yao
- Department of Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, China
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui 230001, China
| | - Wei-Yu Zhang
- Department of Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, China
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui 230001, China
| | - Qin-Qin Jin
- Department of Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, China
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui 230001, China
| | - Yin-Ting Yang
- Department of Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, China
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui 230001, China
| | - Xi-Ya Jiang
- Department of Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, China
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui 230001, China
| | - Nan Zhang
- Department of Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, China
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui 230001, China
| | - Shun Yao
- Department of Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, China
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui 230001, China
| | - Shu-Guang Zhou
- Department of Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, China
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui 230001, China
| | - Guo Chen
- Department of Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, China
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui 230001, China
| |
Collapse
|
5
|
Wang Y, Chen D, Liu Y, Shi D, Duan C, Li J, Shi X, Zhang Y, Yu Z, Sun N, Wang W, Ma Y, Xu X, Otkur W, Liu X, Xia T, Qi H, Piao HL, Liu HX. Multidirectional characterization of cellular composition and spatial architecture in human multiple primary lung cancers. Cell Death Dis 2023; 14:462. [PMID: 37488117 PMCID: PMC10366158 DOI: 10.1038/s41419-023-05992-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
Multiple primary lung cancers (MPLCs) pose diagnostic and therapeutic challenges in clinic. Here, we orchestrated the cellular and spatial architecture of MPLCs by combining single-cell RNA-sequencing and spatial transcriptomics. Notably, we identified a previously undescribed sub-population of epithelial cells termed as CLDN2+ alveolar type II (AT2) which was specifically enriched in MPLCs. This subtype was observed to possess a relatively stationary state, play a critical role in cellular communication, aggregate spatially in tumor tissues, and dominate the malignant histopathological patterns. The CLDN2 protein expression can help distinguish MPLCs from intrapulmonary metastasis and solitary lung cancer. Moreover, a cell surface receptor-TNFRSF18/GITR was highly expressed in T cells of MPLCs, suggesting TNFRSF18 as one potential immunotherapeutic target in MPLCs. Meanwhile, high inter-lesion heterogeneity was observed in MPLCs. These findings will provide insights into diagnostic biomarkers and therapeutic targets and advance our understanding of the cellular and spatial architecture of MPLCs.
Collapse
Affiliation(s)
- Yawei Wang
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, 110042, Shenyang, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, 266000, Qingdao, China
| | - Di Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Yu Liu
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, 110042, Shenyang, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China
| | - Daiwang Shi
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, 110042, Shenyang, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Chao Duan
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, 110042, Shenyang, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Jinghan Li
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, 110042, Shenyang, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Xiang Shi
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, 110042, Shenyang, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Yong Zhang
- Department of Pathology, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China
| | - Zhanwu Yu
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, 110042, Shenyang, China
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China
| | - Nan Sun
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, 110042, Shenyang, China
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China
| | - Wei Wang
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, 110042, Shenyang, China
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China
| | - Yegang Ma
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, 110042, Shenyang, China
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China
| | - Xiaohan Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, 110122, Shenyang, China
| | - Wuxiyar Otkur
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Xiaolong Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Tian Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Huan Qi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China.
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, 110122, Shenyang, China.
| | - Hong-Xu Liu
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, 110042, Shenyang, China.
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China.
| |
Collapse
|
6
|
Brzozowa-Zasada M, Piecuch A, Michalski M, Matysiak N, Kucharzewski M, Łos MJ. The Clinical Application of Immunohistochemical Expression of Notch4 Protein in Patients with Colon Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24087502. [PMID: 37108670 PMCID: PMC10138794 DOI: 10.3390/ijms24087502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The Notch signalling pathway is one of the most conserved and well-characterised pathways involved in cell fate decisions and the development of many diseases, including cancer. Among them, it is worth noting the Notch4 receptor and its clinical application, which may have prognostic value in patients with colon adenocarcinoma. The study was performed on 129 colon adenocarcinomas. Immunohistochemical and fluorescence expression of Notch4 was performed using the Notch4 antibody. The associations between the IHC expression of Notch4 and clinical parameters were analysed using the Chi2 test or Chi2Yatesa test. The Kaplan-Meier analysis and the log-rank test were used to verify the relationship between the intensity of Notch4 expression and the 5-year survival rate of patients. Intracellular localisation of Notch4 was detected by the use of the immunogold labelling method and TEM. 101 (78.29%) samples had strong Notch4 protein expression, and 28 (21.71%) samples were characterised by low expression. The high expression of Notch4 was clearly correlated with the histological grade of the tumour (p < 0.001), PCNA immunohistochemical expression (p < 0.001), depth of invasion (p < 0.001) and angioinvasion (p < 0.001). We can conclude that high expression of Notch4 is correlated with poor prognosis of colon adenocarcinoma patients (log-rank, p < 0.001).
Collapse
Affiliation(s)
- Marlena Brzozowa-Zasada
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Adam Piecuch
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Marek Michalski
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Silesian Nanomicroscopy Centre in Zabrze, Silesia LabMed- Research and Implementation Centre, Medical University of Silesia, 40-055 Katowice, Poland
| | - Natalia Matysiak
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Marek Kucharzewski
- Faculty of Health Sciences, Jan Dlugosz University of Czestochowa, 42-200 Czestochowa, Poland
| | - Marek J Łos
- Department of Pathology, Pomeranian Medical University, 71-344 Szczecin, Poland
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| |
Collapse
|
7
|
Wang ZX, Zhang GJ, Yang XF, Feng SJ, Ji SS, Qi YB. miRNA-633 and KAI1 as Potential Biomarkers of Malignant Melanoma with Gastric Cancer. Comb Chem High Throughput Screen 2023; 26:1001-1014. [PMID: 35713138 DOI: 10.2174/1386207325666220616125608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Malignant melanoma with gastric cancer is one of the most malignant tumors. However, there have been no reports on the effects of KAI1 and miRNA-633 on the survival and prognosis of patients with malignant melanoma with gastric cancer. METHODS Fifty patients with malignant melanoma and gastric cancer were collected from October 2017 to December 2019. The clinical parameters included clinical information, such as sex, age, tumor size, and tumor staging. RT-qPCR was used to detect the expression of KAI1 and miRNA- 633. The role of KAI1 and miRNA-633 on the overall survival of melanoma was explored by the Pearson chi-square test, Spearman-rho correlation test, Univariate and multivariate cox regression analyses, and Kaplan-Meier method. Furthermore, the bioinformatic analysis was used to verify the role of KAI1 and miRNA-633 on malignant melanoma with gastric cancer. RESULTS The expression of KAI1 and miRNA-633 was significantly related with the tumor size and staging of tumor (p<0.05) based on the Pearson chi-square test. Spearman's correlation coefficient displayed that KAI1 was significantly correlated with the miRNA-633 (ρ=-0.439, p=0.001). The result of multivariate cox proportional regression analysis showed that KAI1 (HR =0.109, 95% CI: 0.031-0.375, p< 0.001), and miRNA-633 (HR = 13.315, 95% CI: 3.844-46.119, p<0.001) were significantly associated with overall survival. CONCLUSION The low expression level of KAI1 and high expression of miRNA-633 are significantly correlated with the poor overall survival prognosis of malignant melanoma with gastric cancer, to provide a basis for KAI1 and miRNA-633 to become novel molecular targets for malignant melanoma with gastric cancer.
Collapse
Affiliation(s)
- Zheng-Xiang Wang
- Department of Dermatology, Cangzhou Central Hospital, No. 16 Xinhua Western Road, Cangzhou, 061000 Hebei Province, P.R. China
| | - Guang-Jing Zhang
- Department of Dermatology, Cangzhou Central Hospital, No. 16 Xinhua Western Road, Cangzhou, 061000 Hebei Province, P.R. China
| | - Xiu-Fang Yang
- Department of Dermatology, Cangzhou Central Hospital, No. 16 Xinhua Western Road, Cangzhou, 061000 Hebei Province, P.R. China
| | - Shi-Jun Feng
- Department of Dermatology, Cangzhou Central Hospital, No. 16 Xinhua Western Road, Cangzhou, 061000 Hebei Province, P.R. China
| | - Shan-Shan Ji
- Department of Dermatology, Cangzhou Central Hospital, No. 16 Xinhua Western Road, Cangzhou, 061000 Hebei Province, P.R. China
| | - Ya-Bin Qi
- Department of Dermatology, Cangzhou Central Hospital, No. 16 Xinhua Western Road, Cangzhou, 061000 Hebei Province, P.R. China
| |
Collapse
|
8
|
Yang L, Salai A, Sun X, Liu Q, Liu T, Zhang Q, Tuerxun A, Tan Y, Zheng S, Lu X. Proteomic profiling of plasma exosomes reveals CD82 involvement in the development of esophageal squamous cell carcinoma. J Proteomics 2022; 265:104662. [PMID: 35728771 DOI: 10.1016/j.jprot.2022.104662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023]
Abstract
The Xinjiang Uygur autonomous region has a high incidence of esophageal cancer. For the early diagnosis of patients with esophageal squamous cell carcinoma (ESCC), exosomes were isolated and quantified by liquid chromatography tandem mass spectrometry ((LC-MS/MS) with data independent acquisition (DIA) from the peripheral blood of patients with benign esophageal disease (BED), esophageal intraepithelial neoplasia (EIN) and ESCC. A total of 1117 proteins were identified in the above 9 samples. The proteomic results showed that the quantity of CD82 in exosomes of EIN was significantly higher than that in patients with BED and ESCC. Meanwhile, our ELISA test verified our proteomic results. In addition, the immunohistochemical results showed high CD82 expression in adjacent normal tissues and low expression in ESCC tissues. CD82 expression in ESCC tissues was negatively correlated with tumor stage and the expression of PKM2, and the high expression of CD82 combined with low expression of PKM2 in ESCC tissues suggested a good prognosis. To further clarify the tumor suppressive mechanism of CD82, the TIMER and TISDB databases were analyzed, and CD82 expression in tumor tissues was found to be related to the infiltration of immune cells. CD82 in exosomes is involved in the development of ESCC. SIGNIFICANCE: Xinjiang is a high incidence area of ESCC. When diagnosed in the middle and late stages of the disease, the prognosis of patients is poor. Exosomes provide the possibility of relatively noninvasive and early detection of esophageal carcinogenesis. To the best of our knowledge, this was the first study using the DIA technique to analyze the exosomal proteins of patients with different stages of ESCC. The proteins identified in the exosomes in these three groups could provide insights for understanding how exosomes promote the occurrence of ESCC, the antitumour mechanism of humans and the early diagnosis of ESCC.
Collapse
Affiliation(s)
- Lifei Yang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China; First Department of Lung Cancer Chemotherapy, Cancer Hospital Affiliated of Xinjiang Medical University, Urumqi 830000, China
| | - Adili Salai
- Second Ward of Thoracic Surgery, Cancer Hospital Affiliated of Xinjiang Medical University, Urumqi 830000, China
| | - Xiaohong Sun
- First Ward of Thoracic Surgery, Cancer Hospital Affiliated of Xinjiang Medical University, Urumqi 830000, China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Tao Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Qiqi Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Aerziguli Tuerxun
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Yiyi Tan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China.
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China.
| |
Collapse
|
9
|
Saha D, Mitra D, Alam N, Sen S, Mitra Mustafi S, Mandal S, Majumder B, Murmu N. Orchestrated expression of vasculogenic mimicry and laminin-5γ2 is an independent prognostic marker in oral squamous cell carcinoma. Int J Exp Pathol 2022; 103:54-64. [PMID: 35170826 PMCID: PMC8961501 DOI: 10.1111/iep.12430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/17/2021] [Accepted: 01/26/2022] [Indexed: 01/16/2023] Open
Abstract
Vasculogenic mimicry (VM), an endothelial cell-independent alternative mechanism of blood supply to the malignant tumour, has long been considered as an adverse prognostic factor in many cancers. The correlation of VM with laminin-5γ2 and the assessment of their harmonized expression as an independent risk factor have not been elucidated yet in oral squamous cell carcinoma (OSCC). CD31/PAS staining stratified 116 clinically diagnosed OSCC specimens into VM+ and VM- cohorts. The expression pattern of laminin-5γ2 and its upstream modulator MMP2 was evaluated by immunohistochemistry and Western blot. The Kaplan-Meier and Cox regression analyses were performed to assess the survival and prognostic implications. The presence of VM demonstrated a significant correlation with the expression of laminin-5γ2 (p < .001) and MMP2 (p < .001). This pattern was mirrored by the significant upregulation of laminin-5γ2 and MMP2 in VM+ cohorts compared with the VM- ones. Furthermore, co-expression of VM and laminin-5γ2 was significantly associated with tumour grade (p = .010), primary tumour size (p < .001), lymph node metastasis (p = .001) and TNM stages (p < .001) but not with patients' age, gender, tobacco and alcohol consumption habit. Vasculogenic mimicry and laminin-5γ2 double-positive cohort displayed a significantly poorer disease-free survival (DFS) and overall survival (OS). Vasculogenic mimicry, laminin-5γ2 and their subsequent dual expression underlie a significant prognostic value for DFS [hazard ratio (HR) = 9.896, p = .028] and OS [HR = 21.401, p = .033] in OSCC patients. Together, our findings imply that VM along with laminin-5γ2 is strongly linked to the malignant progression in OSCC and VM and laminin-5γ2 coordination emerges as a critical prognostic biomarker for OSCC.
Collapse
Affiliation(s)
- Depanwita Saha
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Debarpan Mitra
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Neyaz Alam
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sagar Sen
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, Kolkata, India
| | | | - Syamsundar Mandal
- Department of Epidemiology and Biostatistics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Biswanath Majumder
- Departments of Molecular Profiling, Cancer Biology and Molecular Pathology, Mitra Biotech, Bangalore, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
10
|
Niu K, Chen XW, Qin Y, Zhang LP, Liao RX, Sun JG. Celecoxib Blocks Vasculogenic Mimicry via an Off-Target Effect to Radiosensitize Lung Cancer Cells: An Experimental Study. Front Oncol 2021; 11:697227. [PMID: 34568026 PMCID: PMC8461170 DOI: 10.3389/fonc.2021.697227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/18/2021] [Indexed: 12/29/2022] Open
Abstract
The resistance to radiotherapy in lung cancer can be attributed to vasculogenic mimicry (VM) to some extent. Celecoxib (CXB), a selective inhibitor of cyclooxygenase-2 (COX-2), is reported as a radiosensitizer in non-small cell lung cancer (NSCLC). However, whether CXB can regulate VM formation via an off-target effect to radiosensitize NSCLC remains unclear. This study aimed to elucidate the mechanism underlying the radiosensitizing effect of CXB on NSCLC, i.e., whether CXB can inhibit VM formation via binding to newly identified targets other than COX-2. CXB radiosensitivity assay was performed in BALB/c mice bearing H460 xenografts and C57 mice bearing Lewis lung cancer (LLC) xenografts, which were divided into the control, CXB, irradiation (IR) treatment, and IR plus CXB groups. VM formation was observed using 3D Matrigel, periodic acid solution (PAS) staining, and immunofluorescence staining. The potential off-targets of CXB were screened using Protein Data Bank (PDB) database, MGLTools 1.5.6, and AutoDock Vina 1.1.2 and confirmed by Western blotting, enzyme activity assay, and RNA interference in vitro experiments and by immunohistochemistry in vivo experiments. CXB treatment almost eliminated the enhancement of VM formation by IR in vitro and in vivo, partially due to COX-2 inhibition. Four potential off-targets were predicted by molecular docking. Among them, aminopeptidase N (APN) and integrin alpha-V (ITAV) were remarkably inhibited in protein expression and enzyme activity in vitro or in vivo, consistent with the remarkable reduction of VM formation in H460 xenografts in BALB/c mice. In conclusion, CXB dramatically blocked VM through inhibiting newly identified off-targets APN and ITAV, other than COX-2, then radiosensitizing NSCLC.
Collapse
Affiliation(s)
- Kai Niu
- Cancer Institute of Chinese People's Liberation Army (PLA), Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xie-Wan Chen
- Cancer Institute of Chinese People's Liberation Army (PLA), Xinqiao Hospital, Army Medical University, Chongqing, China.,Medical English Department, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Yu Qin
- Nutrition and Food Hygiene Department, Institute of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Lu-Ping Zhang
- Cancer Institute of Chinese People's Liberation Army (PLA), Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Rong-Xia Liao
- Medical English Department, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Jian-Guo Sun
- Cancer Institute of Chinese People's Liberation Army (PLA), Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
11
|
Xiu M, Zeng X, Shan R, Wen W, Li J, Wan R. Targeting Notch4 in Cancer: Molecular Mechanisms and Therapeutic Perspectives. Cancer Manag Res 2021; 13:7033-7045. [PMID: 34526819 PMCID: PMC8436177 DOI: 10.2147/cmar.s315511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/03/2021] [Indexed: 12/28/2022] Open
Abstract
The dysregulation of Notch signaling is found in many cancers and is closely related to cancer progression. As an important Notch receptor, abnormal Notch4 expression affects several tumor-cell behaviors, including stemness, the epithelial-mesenchymal transition, radio/chemoresistance and angiogenesis. In order to inhibit the oncogenic effects of Notch4 activation, several methods for targeting Notch4 signaling have been proposed. In this review, we summarize the known molecular mechanisms through which Notch4 affects cancer progression. Finally, we discuss potential Notch4-targeting therapeutic strategies as a reference for future research.
Collapse
Affiliation(s)
- Mengxi Xiu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China.,Second Clinical Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Xiaohong Zeng
- Imaging Department, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| | - Renfeng Shan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| | - Wu Wen
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| | - Jianfeng Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| | - Renhua Wan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
12
|
Role of Metastasis Suppressor KAI1/CD82 in Different Cancers. JOURNAL OF ONCOLOGY 2021; 2021:9924473. [PMID: 34306081 PMCID: PMC8285166 DOI: 10.1155/2021/9924473] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 02/08/2023]
Abstract
Metastasis is one of the characteristics of malignant tumors and the main cause of death worldwide. The process of metastasis is mainly affected by tumor metastasis genes, tumor metastasis suppressor genes, tumor microenvironment, extracellular matrix degradation, and other factors. Thus, it is essential to elucidate the mechanism of metastasis and find the therapeutic targets in order to prevent the development of malignant tumors. KAI1/CD82, a member of tetraspanin superfamily of glycoproteins, has been reported as a tumor metastasis suppressor gene in various types of cancers without affecting the tumor formation. Many studies have demonstrated that low expression of KAI1/CD82 might lead to poor prognosis due to its interactions with other tetraspanins and integrins, resulting in the regulation of cell motility and invasion, cell-cell adhesion, and apoptosis. Considering its pathological and physiological significance, KAI1/CD82 could be a potential strategy for clinical predicting and preventing tumor progression and metastasis. The present review aims to discuss the role of KAI1/CD82 in metastasis for different cancers and examine its prospects as a metastasis biomarker and a therapeutic target.
Collapse
|
13
|
Treps L, Faure S, Clere N. Vasculogenic mimicry, a complex and devious process favoring tumorigenesis – Interest in making it a therapeutic target. Pharmacol Ther 2021; 223:107805. [DOI: 10.1016/j.pharmthera.2021.107805] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Comprehensive Analysis of Differentially Expressed Long Noncoding RNA-mRNA in the Adenoma-Carcinoma Sequence of DNA Mismatch Repair Proficient Colon Cancer. JOURNAL OF ONCOLOGY 2021; 2021:9977695. [PMID: 34211553 PMCID: PMC8208869 DOI: 10.1155/2021/9977695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/08/2021] [Indexed: 12/24/2022]
Abstract
DNA proficient mismatch repair colon cancer (pMMR CC) is the most common subtype of sporadic CC. We aimed to investigate the role of long noncoding RNAs (lncRNAs) in pMMR CC carcinogenesis. In the present study, we conducted transcriptomic analysis of lncRNAs-mRNAs in five low-grade intraepithelial neoplasia (LGIN), five high-grade intraepithelial neoplasia (HGIN), four pMMR CC, and five normal control (NC) tissues. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway, and coexpression network analyses were performed to elucidate the functions of lncRNAs and mRNAs as well as their interactions. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate five dysregulated lncRNAs in a large set of colon tissues. Receiver-operating characteristic (ROC) curves were employed to evaluate the performance of the candidate lncRNAs. A set of 5783 differentially expressed lncRNAs and 4483 differentially expressed mRNAs were detected among the LGIN, HGIN, pMMR CC, and NC samples. These differentially expressed lncRNAs and mRNAs were assigned to 275 significant GO terms and 179 significant KEGG enriched pathways. qRT-PCR confirmed that the expression of five selected lncRNAs (ENST00000521815, ENST00000603052, ENST00000609220, NR_026543, and ENST00000545920) were consistent with the microarray data. ROC analysis showed that four lncRNAs (ENST00000521815, ENST00000603052, ENST00000609220, and NR_026543) had larger area under the ROC curve (AUC) values compared to serum carcinoembryonic antigens, thereby distinguishing NC from pMMR CC. In conclusion, several lncRNAs play various roles in the adenoma-carcinoma sequence and may serve as potential biomarkers for the early diagnosis of pMMR CC.
Collapse
|
15
|
The complexity of tumour angiogenesis based on recently described molecules. Contemp Oncol (Pozn) 2021; 25:33-44. [PMID: 33911980 PMCID: PMC8063899 DOI: 10.5114/wo.2021.105075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Tumour angiogenesis is a crucial factor associated with tumour growth, progression, and metastasis. The whole process is the result of an interaction between a wide range of different molecules, influencing each other. Herein we summarize novel discoveries related to the less known angiogenic molecules such as galectins, pentraxin-3, Ral-interacting protein of 76 kDa (RLIP76), long non-coding RNAs (lncRNAs), B7-H3, and delta-like ligand-4 (DLL-4) and their role in the process of tumour angiogenesis. These molecules influence the most important molecular pathways involved in the formation of blood vessels in cancer, including the vascular endothelial growth factor (VEGF)-vascular endothelial growth factor receptor interaction (VEGFR), HIF1-a activation, or PI3K/Akt/mTOR and JAK-STAT signalling pathways. Increased expression of galectins, RLIP76, and B7H3 has been proven in several malignancies. Pentraxin-3, which appears to inhibit tumour angiogenesis, shows reduced expression in tumour tissues. Anti-angiogenic treatment based mainly on VEGF inhibition has proved to be of limited effectiveness, leading to the development of drug resistance. The newly discovered molecules are of great interest as a potential source of new anti-cancer therapies. Their role as targets for new drugs and as prognostic markers in neoplasms is discussed in this review.
Collapse
|
16
|
He X, You J, Ding H, Zhang Z, Cui L, Shen X, Bian X, Liu Y, Chen J. Vasculogenic mimicry, a negative indicator for progression free survival of lung adenocarcinoma irrespective of first line treatment and epithelial growth factor receptor mutation status. BMC Cancer 2021; 21:132. [PMID: 33549061 PMCID: PMC7866877 DOI: 10.1186/s12885-021-07863-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Background Vascular mimicry (VM) was associated with the prognosis of cancers. The aim of the study was to explore the association between VM and anticancer therapy response in patients with lung adenocarcinoma. Methods This was a single-center retrospective study of patients with lung adenocarcinoma between March 1st, 2013, to April 1st, 2019, at the Second People’s Hospital of Taizhou City. All included patients were divided into the VM and no-VM groups according to whether VM was observed or not in the specimen. Vessels with positive PAS and negative CD34 staining were confirmed as VM. The main outcome was progression-free survival (PFS). Results Sixty-six (50.4%) patients were male. Eighty-one patients received chemotherapy as the first-line treatment, and 50 patients received TKIs. Forty-five (34.4%) patients were confirmed with VM. There was no difference regarding the first-line treatment between the VM and no-VM groups (P = 0.285). The 86 patients without VM had a median PFS of 279 (range, 90–1095) days, and 45 patients with VM had a median PFS of 167 (range, 90–369) days (P < 0.001). T stage (hazard ratio (HR) = 1.37, 95% confidence interval (CI): 1.10–1.71), N stage (HR = 1.43, 95%CI: 1.09–1.86), M stage (HR = 2.85, 95%CI: 1.76–4.61), differentiation (HR = 1.85, 95%CI: 1.29–2.65), therapy (HR = 0.32, 95%CI: 0.21–0.49), VM (HR = 2.12, 95%CI: 1.33–3.37), and ECOG (HR = 1.41, 95%CI: 1.09–1.84) were independently associated with PFS. Conclusion The benefits of first-line TKIs for NSCLC with EGFR mutation are possibly better than those of platinum-based regimens in patients without VM, but there is no difference in the benefit of chemotherapy or target therapy for VM-positive NSCLC harboring EGFR mutations.
Collapse
Affiliation(s)
- Xuejun He
- Oncology Department, the Second People's Hospital of Taizhou affiliated to Medical College of Yangzhou University, No. 27, Jiangyan District, Taizhou, 225500, China
| | - Jijun You
- Orthopaedic Department, the Second People's Hospital of Taizhou Affiliated to Medical College of Yangzhou University, Taizhou, China
| | - Haibing Ding
- Orthopaedic Department, the Second People's Hospital of Taizhou Affiliated to Medical College of Yangzhou University, Taizhou, China
| | - Zhisheng Zhang
- Oncology Department, the Second People's Hospital of Taizhou affiliated to Medical College of Yangzhou University, No. 27, Jiangyan District, Taizhou, 225500, China
| | - Lin Cui
- Oncology Department, the Second People's Hospital of Taizhou affiliated to Medical College of Yangzhou University, No. 27, Jiangyan District, Taizhou, 225500, China
| | - Xiaomei Shen
- Oncology Department, the Second People's Hospital of Taizhou affiliated to Medical College of Yangzhou University, No. 27, Jiangyan District, Taizhou, 225500, China
| | - Xiaoxia Bian
- Oncology Department, the Second People's Hospital of Taizhou affiliated to Medical College of Yangzhou University, No. 27, Jiangyan District, Taizhou, 225500, China
| | - Yanqing Liu
- Institute of Medicine, Yangzhou University, No. 88, South Daxue Road, Yangzhou, 225001, China
| | - Jue Chen
- Oncology Department, the Second People's Hospital of Taizhou affiliated to Medical College of Yangzhou University, No. 27, Jiangyan District, Taizhou, 225500, China. .,Institute of Medicine, Yangzhou University, No. 88, South Daxue Road, Yangzhou, 225001, China. .,Respiratory Department, the Second People's Hospital of Taizhou Affiliated to Medical College of Yangzhou University, Taizhou, China.
| |
Collapse
|
17
|
Cancer Stem Cells-Key Players in Tumor Relapse. Cancers (Basel) 2021; 13:cancers13030376. [PMID: 33498502 PMCID: PMC7864187 DOI: 10.3390/cancers13030376] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor relapse and treatment failure are unfortunately common events for cancer patients, thus often rendering cancer an uncurable disease. Cancer stem cells (CSCs) are a subset of cancer cells endowed with tumor-initiating and self-renewal capacity, as well as with high adaptive abilities. Altogether, these features contribute to CSC survival after one or multiple therapeutic approaches, thus leading to treatment failure and tumor progression/relapse. Thus, elucidating the molecular mechanisms associated with stemness-driven resistance is crucial for the development of more effective drugs and durable responses. This review will highlight the mechanisms exploited by CSCs to overcome different therapeutic strategies, from chemo- and radiotherapies to targeted therapies and immunotherapies, shedding light on their plasticity as an insidious trait responsible for their adaptation/escape. Finally, novel CSC-specific approaches will be described, providing evidence of their preclinical and clinical applications.
Collapse
|
18
|
Padmavathi P, Setlur AS, Chandrashekar K, Niranjan V. A comprehensive in-silico computational analysis of twenty cancer exome datasets and identification of associated somatic variants reveals potential molecular markers for detection of varied cancer types. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
19
|
Gong FL, Wang L, Yu LG, Dang YF, Jiang XN, Zhao L, Guo XL. DHPAC, a novel microtubule depolymerizing agent, suppresses angiogenesis and vasculogenic mimicry formation of human non-small cell lung cancer. J Cell Biochem 2020; 121:4756-4771. [PMID: 32056279 DOI: 10.1002/jcb.29690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 02/04/2020] [Indexed: 01/10/2023]
Abstract
Angiogenesis and vasculogenic mimicry (VM) are the main causes of tumor metastasis and recurrence. In this study, we investigated the antiangiogenesis and anti-VM formation of a novel microtubule depolymerizing agent, DHPAC, as well as combretastatin A4 (CA4, a combretastatin derivate) in non-small-cell lung cancer (NSCLC), subsequently elucidating the underlying mechanisms. In human umbilical vein endothelial cells (HUVECs), DHPAC could enter cells and inhibit proliferation, migration, and angiogenesis in the presence and absence of conditioned medium from H1299 cells. Interestingly, the inhibition was enhanced under the stimulation of the conditioned medium. Under hypoxia or normoxia, DHPAC suppressed signal transducer and activator of transcription 3 phosphorylation and reduced vascular endothelial growth factor (VEGF) expression and secretion from HUVECs, thus impeding the activation of the downstream signal transduction pathway of VEGF/VEGFR2. However, JNK inhibitors reversed the inhibitory effect of DHPAC on the angiogenesis, suggesting that DHPAC regulated angiogenesis through activating JNK. In H1299 cells, DHPAC could inhibit proliferation, migration, invasion, and the formation of VM. In addition, DHPAC inhibited the phosphorylation of FAK and AKT and decreased the expressions of VEGF, matrix metalloproteinase 2 (MMP2), MMP9 and Laminin 5, suggesting that DHPAC inhibited VM formation via the FAK/AKT signaling pathway. In addition, CA4 showed a similar effect as DHPAC against angiogenesis and VM formation. These new findings support the use of microtubule destabilizing agents as a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Fu-Lian Gong
- Key Laboratory of Chemical Biology (Ministry of Education), Drug Screening Unit Platform, Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Lei Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Drug Screening Unit Platform, Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Lu-Gang Yu
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Yi-Fan Dang
- Key Laboratory of Chemical Biology (Ministry of Education), Drug Screening Unit Platform, Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiao-Ning Jiang
- Key Laboratory of Chemical Biology (Ministry of Education), Drug Screening Unit Platform, Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Lin Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), Drug Screening Unit Platform, Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiu-Li Guo
- Key Laboratory of Chemical Biology (Ministry of Education), Drug Screening Unit Platform, Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
20
|
Bao S, Jin S, Wang C, Tu P, Hu K, Lu J. Androgen receptor suppresses vasculogenic mimicry in hepatocellular carcinoma via circRNA7/miRNA7-5p/VE-cadherin/Notch4 signalling. J Cell Mol Med 2020; 24:14110-14120. [PMID: 33118329 PMCID: PMC7754040 DOI: 10.1111/jcmm.16022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 01/16/2023] Open
Abstract
Androgen receptor (AR) can suppress hepatocellular carcinoma (HCC) invasion and metastasis at an advanced stage. Vasculogenic mimicry (VM), a new vascularization pattern by which tumour tissues nourish themselves, is correlated with tumour progression and metastasis. Here, we investigated the effect of AR on the formation of VM and its mechanism in HCC. The results suggested that AR could down-regulate circular RNA (circRNA) 7, up-regulate micro RNA (miRNA) 7-5p, and suppress the formation of VM in HCC Small hairpin circR7 (ShcircR7) could reverse the impact on VM and expression of VE-cadherin and Notch4 increased by small interfering AR (shAR) in HCC, while inhibition of miR-7-5p blocked the formation of VM and expression of VE-cadherin and Notch4 decreased by AR overexpression (oeAR) in HCC. Mechanism dissection demonstrated that AR could directly target the circR7 host gene promoter to suppress circR7, and miR-7-5p might directly target the VE-cadherin and Notch4 3'UTR to suppress their expression in HCC. In addition, knockdown of Notch4 and/or VE-cadherin revealed that shVE-cadherin or shNotch4 alone could partially reverse the formation of HCC VM, while shVE-cadherin and shNotch4 together could completely suppress the formation of HCC VM. Those results indicate that AR could suppress the formation of HCC VM by down-regulating circRNA7/miRNA7-5p/VE-Cadherin/Notch4 signals in HCC, which will help in the design of novel therapies against HCC.
Collapse
Affiliation(s)
- Shixiang Bao
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Shuai Jin
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Chunhua Wang
- Departments of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peipei Tu
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Kongwang Hu
- Departments of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jingtao Lu
- School of Life Sciences, Anhui Medical University, Hefei, China.,Departments of Pathology and Urology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
21
|
Kim D, Lee JY, Yoo JY, Cho JY. Genetic Features of Lung Adenocarcinoma with Ground- Glass Opacity: What Causes the Invasiveness of Lung Adenocarcinoma? THE KOREAN JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2020; 53:250-257. [PMID: 33020345 PMCID: PMC7553832 DOI: 10.5090/kjtcs.20.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 12/25/2022]
Abstract
Background Lung adenocarcinoma (LUAD) with ground-glass opacity (GGO) can become aggravated, but the reasons for this aggravation are not fully understood. The goal of this study was to analyze the genetic features and causes of progression of GGO LUAD. Methods LUAD tumor samples and normal tissues were analyzed using an Illumina HiSeq 4000 system. After the tumor mutational burden (TMB) was calculated, the identified mutations were classified as those found only in GGO LUAD, those present only in non- GGO LUAD, and those common to both tissue types. Ten high-frequency genes were selected from each domain, after which protein interaction network analysis was conducted. Results Overall, 227 mutations in GGO LUAD, 212 in non-GGO LUAD, and 48 that were common to both tumor types were found. The TMB was 8.8 in GGO and 7.8 in non-GGO samples. In GGO LUAD, mutations of FCGBP and SFTPA1 were identified. FOXQ1, IRF5, and MAGEC1 mutations were common to both types, and CDC27 and NOTCH4 mutations were identified in the non-GGO LUAD. Protein interaction network analysis indicated that IRF5 (common to both tissue types) and CDC27 (found in the non-GGO LUAD) had significant biological functions related to the cell cycle and proliferation. Conclusion In conclusion, GGO LUAD exhibited a higher TMB than non-GGO LUAD. No clinically meaningful mutations were found to be specific to GGO LUAD, but mutations involved in the epithelial-mesenchymal transition or cell cycle were found in both tumor types and in non-GGO tissue alone. These findings could explain the non-invasiveness of GGO-type LUAD.
Collapse
Affiliation(s)
- Dohun Kim
- Department of Thoracic and Cardiovascular Surgery, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Jong-Young Lee
- Institute of Genomic Health, Oneomics Co. Ltd., Seoul, Korea
| | - Jin Young Yoo
- Department of Radiology, Chungbuk National University Hospital, Cheongju, Korea
| | - Jun Yeun Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Korea
| |
Collapse
|
22
|
Small Ones to Fight a Big Problem-Intervention of Cancer Metastasis by Small Molecules. Cancers (Basel) 2020; 12:cancers12061454. [PMID: 32503267 PMCID: PMC7352875 DOI: 10.3390/cancers12061454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Metastasis represents the most lethal attribute of cancer and critically limits successful therapies in many tumor entities. The clinical need is defined by the fact that all cancer patients, who have or who will develop distant metastasis, will experience shorter survival. Thus, the ultimate goal in cancer therapy is the restriction of solid cancer metastasis by novel molecularly targeted small molecule based therapies. Biomarkers identifying cancer patients at high risk for metastasis and simultaneously acting as key drivers for metastasis are extremely desired. Clinical interventions targeting these key molecules will result in high efficiency in metastasis intervention. In result of this, personalized tailored interventions for restriction and prevention of cancer progression and metastasis will improve patient survival. This review defines crucial biological steps of the metastatic cascade, such as cell dissemination, migration and invasion as well as the action of metastasis suppressors. Targeting these biological steps with tailored therapeutic strategies of intervention or even prevention of metastasis using a wide range of small molecules will be discussed.
Collapse
|
23
|
PNO1, which is negatively regulated by miR-340-5p, promotes lung adenocarcinoma progression through Notch signaling pathway. Oncogenesis 2020; 9:58. [PMID: 32483111 PMCID: PMC7264314 DOI: 10.1038/s41389-020-0241-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 12/24/2022] Open
Abstract
Many studies have shown that the hyperactivation of ribosome biogenesis plays essential roles in the initiation and progression of cancers. As a ribosome assembly factor, PNO1 plays an important role in ribosome biogenesis. However, little is known about the expression and function of PNO1 in human tumors. In our present study, we aimed to explore the functional roles and the underlying molecular mechanisms of PNO1 in human lung adenocarcinoma (LUAD). Both bioinformatics databases and tumor tissues demonstrated that the expression of PNO1 in LUAD tissues was higher than that in adjacent tissues and predicted poor survival in LUAD patients. In vitro and in vivo assays suggested that downregulation of PNO1 expression suppressed LUAD cell proliferation and invasion. Further studies found that miR-340-5p depressed PNO1 expression via direct binding to the 3′ untranslated region (UTR) of PNO1. PNO1 expression was negatively correlated with miR-340-5p expression in LUAD cells and tissue samples. Moreover, upregulation or downregulation of miR-340-5p expression reversed the effects of PNO1 inhibition and overexpression, respectively. Meanwhile, downregulation of PNO1 inhibited Notch signaling pathway which modulated epithelial mesenchymal transition (EMT). These results indicate that PNO1, negatively regulated by miR-340-5p, played an important role in LUAD progression via Notch signaling pathway. The miR-340-5p/PNO1/Notch axis might be a potential target for individualized and precise treatment of LUAD patients in the future.
Collapse
|
24
|
Fathi Maroufi N, Taefehshokr S, Rashidi MR, Taefehshokr N, Khoshakhlagh M, Isazadeh A, Mokarizadeh N, Baradaran B, Nouri M. Vascular mimicry: changing the therapeutic paradigms in cancer. Mol Biol Rep 2020; 47:4749-4765. [PMID: 32424524 DOI: 10.1007/s11033-020-05515-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
Cancer is a major problem in the health system, and despite many efforts to effectively treat it, none has yet been fully successful. Angiogenesis and metastasis are considered as major challenges in the treatment of various cancers. Researchers have struggled to succeed with anti-angiogenesis drugs for the effective treatment of cancer, although new challenges have emerged in the treatment with the emergence of resistance to anti-angiogenesis and anti-metastatic drugs. Numerous studies have shown that different cancers can resist anti-angiogenesis drugs in a new process called vascular mimicry (VM). The studies have revealed that cells resistant to anti-angiogenesis cancer therapies are more capable of forming VMs in the in vivo and in vitro environment, although there is a link between the presence of VM and poor clinical outcomes. Given the importance of the VM in the challenges facing cancer treatment, researchers are trying to identify factors that prevent the formation of these structures. In this review article, it is attempted to provide a comprehensive overview of the molecules and main signaling pathways involved in VM phenomena, as well as the agents currently being identified as anti-VM and the role of VM in response to treatment and prognosis of cancer patients.
Collapse
Affiliation(s)
- Nazila Fathi Maroufi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON, Canada
| | - Mahdieh Khoshakhlagh
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narmin Mokarizadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Ayala-Domínguez L, Olmedo-Nieva L, Muñoz-Bello JO, Contreras-Paredes A, Manzo-Merino J, Martínez-Ramírez I, Lizano M. Mechanisms of Vasculogenic Mimicry in Ovarian Cancer. Front Oncol 2019; 9:998. [PMID: 31612116 PMCID: PMC6776917 DOI: 10.3389/fonc.2019.00998] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022] Open
Abstract
Solid tumors carry out the formation of new vessels providing blood supply for growth, tumor maintenance, and metastasis. Several processes take place during tumor vascularization. In angiogenesis, new vessels are derived from endothelial cells of pre-existing vessels; while in vasculogenesis, new vessels are formed de novo from endothelial progenitor cells, creating an abnormal, immature, and disorganized vascular network. Moreover, highly aggressive tumor cells form structures similar to vessels, providing a pathway for perfusion; this process is named vasculogenic mimicry (VM), where vessel-like channels mimic the function of vessels and transport plasma and blood cells. VM is developed by numerous types of aggressive tumors, including ovarian carcinoma which is the second most common cause of death among gynecological cancers. VM has been associated with poor patient outcome and survival in ovarian cancer, although the involved mechanisms are still under investigation. Several signaling molecules have an important role in VM in ovarian cancer, by regulating the expression of genes related to vascular, embryogenic, and hypoxic signaling pathways. In this review, we provide an overview of the current knowledge of the signaling molecules involved in the promotion and regulation of VM in ovarian cancer. The clinical implications and the potential benefit of identification and targeting of VM related molecules for ovarian cancer treatment are also discussed.
Collapse
Affiliation(s)
- Lízbeth Ayala-Domínguez
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leslie Olmedo-Nieva
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Programa de Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - J Omar Muñoz-Bello
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adriana Contreras-Paredes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Imelda Martínez-Ramírez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
26
|
Wang X, Yang R, Wang Q, Wang Y, Ci H, Wu S. Aberrant expression of vasculogenic mimicry, PRRX1, and CIP2A in clear cell renal cell carcinoma and its clinicopathological significance. Medicine (Baltimore) 2019; 98:e17028. [PMID: 31490389 PMCID: PMC6738984 DOI: 10.1097/md.0000000000017028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Vasculogenic mimicry (VM) involves a tubular structure with a basement membrane that is similar to and communicates with vessels but functions independent of blood vessels to nourish tumor cells, promote tumor progression, invasion, and metastasis, with reduced 5-year survival rates. Tumor cell proliferation, invasion, and metastasis are promoted by the epithelial-mesenchymal transition (EMT). Paired-related homeobox 1 (PRRX1), a newly discovered EMT inducer, has been shown to correlate with metastasis and prognosis in diverse cancer types. Cancerous inhibitor of protein phosphatase 2A (CIP2A) was initially recognized as an oncoprotein. In this study, we aimed to investigate the expression and clinical significance of the EMT markers PRRX1, CIP2A and VM in clear cell renal cell carcinoma (CCRCC) and their respective associations with clinicopathological parameters and survival.Expression of PRRX1, CIP2A and VM in whole CCRCC tissues from 110 patients was analyzed by immunohistochemical and histochemical staining. Fisher's exact test or the chi square test was used to assess associations with positive or negative staining of these markers and clinicopathological characteristics.Positive expression of CIP2A and VM presence was significantly higher and that of PRRX1 was significantly lower in CCRCC tissues than in corresponding normal tissues. Furthermore, positive expression of CIP2A and VM was significantly associated with tumor grade, size, lymph node metastasis (LNM) stage, and tumor node metastasis (TNM) stage and inversely associated with overall survival time (OST). Moreover, levels of PRRX1 were negatively associated with tumor grade, size, LNM stage, and TNM stage. The PRRX1 subgroup had a significantly longer OST time than did the PRRX1 subgroup. In multivariate analysis, high VM and CIP2A, tumor grade, LNM stage, TNM stage, and low PRRX1 levels were identified as potential independent prognostic factors for OST in CCRCC patients.VM and expression of CIP2A and PRRX1 represent promising biomarkers for metastasis and prognosis and potential therapeutic targets in CCRCC.
Collapse
Affiliation(s)
- Xiaolin Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Ruixue Yang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Qi Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Yichao Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Hongfei Ci
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Shiwu Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| |
Collapse
|
27
|
Ma Y, Guo Y, Ye H, Huang K, Lv Z, Ke Y. Different effects of titanium dioxide nanoparticles instillation in young and adult mice on DNA methylation related with lung inflammation and fibrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 176:1-10. [PMID: 30903973 DOI: 10.1016/j.ecoenv.2019.03.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Wide use of titanium dioxide nanoparticles (TiO2 NPs) as white pigments induces unintentionally release in environment which increases concerns about their adverse health effects on respiratory system. So it is crucial to get a deep understanding of the disease process and molecular mechanism. Epigenetic mechanisms, such as DNA methylation, have been found to play a role in the development of lung diseases by affecting expression of key genes. In addition, there could be potential different toxic effects of TiO2 NPs between young and adult. Thus, the comparative toxicity of TiO2 NPs in 5-week (young) and 10-week (adult) old NIH mice is investigated in this study following nasal inhalation of TiO2 NPs at dose of 20 mg/kg (body weight)/day for 30 days. Global DNA methylation and hydroxymethylation in lung were measured. Promoter methylation of inflammatory genes (IFN-γ and TNF-α) and tissue fibrosis gene (Thy-1) were determined. Additional, RNA-sequencing runs were performed on the pulmonic libraries. We found the induced pulmonary inflammation and fibrosis were more severe in young mice. Decreased global methylation and hydroxymethylation were only found in the young group. The altered methylation in promoter of TNF-α and Thy-1 were found to play a role in the inflammatory response and fibration. RNA-sequencing showed that in pathways in cancer expression of 197 genes was up-regulated in the young mice more that in the adult mice. All these results suggested that the young ages are more sensitive to TiO2 NP exposure and the potential of abnormal DNA methylation might be used as biomarkers of both exposure and disease development.
Collapse
Affiliation(s)
- Yue Ma
- Shenzhen Key Laboratory of Molecular Epidemiology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yinsheng Guo
- Shenzhen Key Laboratory of Molecular Epidemiology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hailing Ye
- Shenzhen Key Laboratory of Molecular Epidemiology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China; School of Public Health, Fujian Medical University, Fuzhou, China
| | - Kaiqin Huang
- Shenzhen Key Laboratory of Molecular Epidemiology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China; School of Public Health, Fujian Medical University, Fuzhou, China
| | - Ziquan Lv
- Shenzhen Key Laboratory of Molecular Epidemiology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yuebin Ke
- Shenzhen Key Laboratory of Molecular Epidemiology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| |
Collapse
|
28
|
Xu Q, Lin D, Li X, Xiao R, Liu Z, Xiong W, Cai L, He F. Association between single nucleotide polymorphisms of NOTCH signaling pathway-related genes and the prognosis of NSCLC. Cancer Manag Res 2019; 11:6895-6905. [PMID: 31413635 PMCID: PMC6662170 DOI: 10.2147/cmar.s197747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/12/2019] [Indexed: 12/12/2022] Open
Abstract
Objective In this study, we analyzed the association between genetic variants of genes in the NOTCH signaling pathway and the prognosis of non-small-cell lung cancer (NSCLC) in the Chinese population. We also explored the interaction between genetic and epidemiological factors for the test group. Methods We performed genotyping of 987 NSCLC patients. Then, we used Cox proportional hazard models to analyze the associations between single-nucleotide polymorphisms (SNPs) and the prognosis of NSCLC. We employed Stata software to test the heterogeneity of associations between subgroups, and we analyzed the additive and multiplicative interactions between SNPs and epidemiologic factors. Results This work revealed the important prognostic and predictive value of rs915894 in the NOTCH4 gene, which may be regarded as a promising prognosis biomarker of NSCLC. Cox regression analysis indicated that the C allele of rs915894 is associated with longer survival and decreased risk of death in NSCLC (codominant model: adjusted HR =0.83, 95% CI =0.70-0.99; dominant model: adjusted HR =0.83, 95% CI =0.71-0.98). Additional stepwise regression analysis suggested that this SNP is an independently favorable factor for the prognosis of NSCLC (dominant model: adjusted HR =0.85, 95% CI =0.72-0.99). This protective effect is more pronounced for patients who are not smokers, have a history of other lung diseases, or have a family history of cancer. We also detected statistically significant additive and multiplicative interactions between rs915894 and smoking, rs915894 and history of lung diseases, and rs915894 and family history of cancer, which all affect NSCLC survival. Conclusion This study demonstrated that rs915894 in NOTCH 4 may be a genetic marker for NSCLC prognosis in the Chinese population and that rs915894 may have an interactive relationship with epidemiologic factors.
Collapse
Affiliation(s)
- Qiuping Xu
- Medical Department, The Affiliated Hospital of Putian University, Putian, Fujian, People's Republic of China.,Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Danhua Lin
- Medical Department, The Affiliated Hospital of Putian University, Putian, Fujian, People's Republic of China
| | - Xu Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Rendong Xiao
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Zhiqiang Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Weimin Xiong
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Lin Cai
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Fei He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|