1
|
Yuan Y, Chen Y, Huang J, Bao X, Shen W, Sun Y, Mao H. Epidemiological and etiological investigations of hand, foot, and mouth disease in Jiashan, northeastern Zhejiang Province, China, during 2016 to 2022. Front Public Health 2024; 12:1377861. [PMID: 38751577 PMCID: PMC11094292 DOI: 10.3389/fpubh.2024.1377861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Background Hand, foot, and mouth disease (HFMD) is a common infectious disease in children. Enterovirus A71 (EV71) and coxsackievirus A16 (CA16) have been identified as the predominant pathogens for several decades. In recent years, coxsackievirus A6 (CA6) and coxsackievirus A10 (CA10) have played increasingly important roles in a series of HFMD outbreaks. We performed a retrospective analysis of the epidemiology of HFMD and the spectrum of different viral serotypes, to elucidate the genetic and phylogenetic characteristics of the main serotypes in the Jiashan area during 2016 to 2022. Methods Descriptive epidemiological methods were used to analyze the time and population distribution of HFMD in Jiashan during 2016 to 2022 based on surveillance data. Molecular diagnostic methods were performed to identify the viral serotypes and etiological characteristics of HFMD. Phylogenetic analyses was based on VP1 region of CA16 and CA6. Results The average annual incidence rate of HFMD fluctuated from 2016 to 2022. Children aged 1-5 years accounted for 81.65% of cases and boys were more frequently affected than girls. Except when HFMD was affected by the COVID-19 epidemic in 2020 and 2022, epidemics usually peak in June to July, followed by a small secondary peak from October to December and a decline in February. Urban areas had a high average incidence and rural areas had the lowest. Among 560 sample collected in Jiashan, 472 (84.29%) were positive for enterovirus. The most frequently identified serotypes were CA6 (296, 52.86%), CA16 (102, 18.21%), EV71 (16, 2.86%), CA10 (14, 2.50%) and other enteroviruses (44, 7.86%). There were 71 and 142 VP1 sequences from CA16 and CA6, respectively. Substitution of N218D, A220L and V251I was detected in CA16 and may have been related to viral infectivity. Phylogenetic analysis showed that CA16 could be assigned to two genogroups, B1a and B1b, while all the CA6 sequences belonged to the D3a genogroup. Conclusion CA6 and CA16 were the two major serotypes of enteroviruses circulating in the Jiashan area during 2016 to 2022. Continuous and comprehensive surveillance for HFMD is needed to better understand and evaluate the prevalence and evolution of the associated pathogens.
Collapse
Affiliation(s)
- Yongjuan Yuan
- Jiashan County Center for Disease Control and Prevention, Jiaxing, Zhejiang, China
| | - Yun Chen
- Jiashan County Center for Disease Control and Prevention, Jiaxing, Zhejiang, China
| | - Jian Huang
- Jiashan County Center for Disease Control and Prevention, Jiaxing, Zhejiang, China
| | - Xiaoxia Bao
- Jiashan County Center for Disease Control and Prevention, Jiaxing, Zhejiang, China
| | - Wei Shen
- Jiashan County Center for Disease Control and Prevention, Jiaxing, Zhejiang, China
| | - Yi Sun
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Haiyan Mao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Song Y, Zhang Y, Han Z, Xu W, Xiao J, Wang X, Wang J, Yang J, Yu Q, Yu D, Chen J, Huang W, Li J, Xie T, Lu H, Ji T, Yang Q, Yan D, Zhu S, Xu W. Genetic recombination in fast-spreading coxsackievirus A6 variants: a potential role in evolution and pathogenicity. Virus Evol 2020; 6:veaa048. [PMID: 34804589 PMCID: PMC8597624 DOI: 10.1093/ve/veaa048] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a common global epidemic. From 2008
onwards, many HFMD outbreaks caused by coxsackievirus A6 (CV-A6) have been
reported worldwide. Since 2013, with a dramatically increasing number of
CV-A6-related HFMD cases, CV-A6 has become the predominant HFMD pathogen in
mainland China. Phylogenetic analysis based on the VP1 capsid
gene revealed that subtype D3 dominated the CV-A6 outbreaks. Here, we performed
a large-scale (near) full-length genetic analysis of global and Chinese CV-A6
variants, including 158 newly sequenced samples collected extensively in
mainland China between 2010 and 2018. During the global transmission of subtype
D3 of CV-A6, the noncapsid gene continued recombining, giving rise to a series
of viable recombinant hybrids designated evolutionary lineages, and each lineage
displayed internal consistency in both genetic and epidemiological features. The
emergence of lineage –A since 2005 has triggered CV-A6 outbreaks
worldwide, with a rate of evolution estimated at
4.17 × 10−3 substitutions
site-1 year−1 based on a
large number of monophyletic open reading frame sequences, and created a series
of lineages chronologically through varied noncapsid recombination events. In
mainland China, lineage –A has generated another two novel widespread
lineages (–J and –L) through recombination within the
enterovirus A gene pool, with robust estimates of occurrence time. Lineage
–A, –J, and –L infections presented dissimilar clinical
manifestations, indicating that the conservation of the CV-A6 capsid gene
resulted in high transmissibility, but the lineage-specific noncapsid gene might
influence pathogenicity. Potentially important amino acid substitutions were
further predicted among CV-A6 variants. The evolutionary phenomenon of noncapsid
polymorphism within the same subtype observed in CV-A6 was uncommon in other
leading HFMD pathogens; such frequent recombination happened in fast-spreading
CV-A6, indicating that the recovery of deleterious genomes may still be ongoing
within CV-A6 quasispecies. CV-A6-related HFMD outbreaks have caused a
significant public health burden and pose a great threat to children’s
health; therefore, further surveillance is greatly needed to understand the full
genetic diversity of CV-A6 in mainland China.
Collapse
Affiliation(s)
- Yang Song
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Zhenzhi Han
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Wen Xu
- Yunnan Center for Disease Control and Prevention, Kunming, Yunnan Province, China
| | - Jinbo Xiao
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Xianjun Wang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, China
| | - Jianxing Wang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, China
| | - Jianfang Yang
- Shanxi Center for Disease Control and Prevention, Taiyuan, Shanxi Province, China
| | - Qiuli Yu
- Hebei Center for Disease Control and Prevention, Shijiazhuang, Hebei Province, China
| | - Deshan Yu
- Gansu Center for Disease Control and Prevention, Lanzhou, Gansu Province, China
| | - Jianhua Chen
- Gansu Center for Disease Control and Prevention, Lanzhou, Gansu Province, China
| | - Wei Huang
- Chongqing Center for Disease Control and Prevention, Chongqing City, China
| | - Jie Li
- Beijing Center for Disease Control and Prevention, Beijing City, China
| | - Tong Xie
- Tianjin Center for Disease Control and Prevention, Tianjin City, China
| | - Huanhuan Lu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Tianjiao Ji
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Qian Yang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei Province, China.,Anhui University of Science and Technology, Anhui Province, China
| |
Collapse
|
3
|
Moghadam AG, Yousefi E, Ghatie MA, Moghadam AG, Pouladfar GR, Jamalidoust M. Investigating the etiologic agents of aseptic meningitis outbreak in Iranian children. J Family Med Prim Care 2020; 9:1573-1577. [PMID: 32509652 PMCID: PMC7266184 DOI: 10.4103/jfmpc.jfmpc_1003_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/25/2020] [Accepted: 02/07/2020] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION This study aimed to determine the viral agent (s) and their genome burden associated with an aseptic meningitis outbreak that occurred in Yasuj, Iran. MATERIALS AND METHODS During April to August 2015, 104 CSF samples from 104 patients under 14 years old admitted to the hospital of Yasuj, Iran, with aseptic meningitis associated clinical signs were collected. 200 μl CSF specimens was prepared for DNA and RNA viral genome extraction each and then subjected to diagnostic Taq-man real time PCR assays for the present of Enteroviruses, HSV, VZV, mumps, measles and rubella in the samples. RESULTS The majority of them had experienced clinical meningitis sign. Primary laboratory differentiated tests were in favor of viral meningitis. Among a total of 104 patients diagnosed with clinically aseptic meningitis, enterovirus as the most significant viral agent was detected in 53 subjects. However, mumps, HSV and VZV, as the endemic causes of viral meningitis, were detected in 6, 6 and 2 of the affected patients. It was revealed that two HSV and one VZV affected patients were co-infected with enteroviruses. All affected children with relatively variable viral load recovered without any sequels. CONCLUSION The present study revealed enterovirus as the main predominant cause of pediatric aseptic meningitis that broke out in Yasuj-Iran. Also, the co-circulation of mumps, HSV and VZV, as the endemic cause during the same aseptic meningitis outbreak, was demonstrated in some cases.
Collapse
Affiliation(s)
| | - Eslam Yousefi
- Department of Pediatrics, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohamad Amin Ghatie
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Gholam Reza Pouladfar
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Nemazi Hospital, Shiraz, Iran
| | - Marzieh Jamalidoust
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Nemazi Hospital, Shiraz, Iran
| |
Collapse
|
4
|
Zhao TS, Du J, Sun DP, Zhu QR, Chen LY, Ye C, Wang S, Liu YQ, Cui F, Lu QB. A review and meta-analysis of the epidemiology and clinical presentation of coxsackievirus A6 causing hand-foot-mouth disease in China and global implications. Rev Med Virol 2019; 30:e2087. [PMID: 31811676 DOI: 10.1002/rmv.2087] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/09/2019] [Accepted: 09/14/2019] [Indexed: 12/22/2022]
Abstract
Coxsackievirus A6 (CV-A6) has been associated with increasingly occurred sporadic hand-foot-mouth disease (HFMD) cases and outbreak events in many countries. In order to understand epidemiological characteristics of CV-A6, we collected the information describing HFMD caused by CV-A6 to describe the detection rate, severe rate and onychomadesis rate, which is defined as one or more nails defluvium, caused by CV-A6 from 2007 to 2017. The results showed that there was an outbreak of CV-A6 every other year, and overall trend of the epidemic of CA6-associated HFMD was increasing in China. The detection rate of CV-A6 in other countries was 32.0% (95% CI: 25.0%~40.0%) before 2013 and 28.0% (95% CI: 20.0%~36.0%) after 2013, respectively. Although the severe rate of HFMD caused by CV-A6 was low (0.10%, 95% CI: 0.01%~0.20%), CV-A6 can cause a high incidence of onychomadesis (28.0%, 95%CI: 21.9%-34.3%). Thus, it would be worthwhile to research and develop an effective multivalent vaccine for CV-A6 to achieve a more powerful prevention of HMFD.
Collapse
Affiliation(s)
- Tian-Shuo Zhao
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Juan Du
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Da-Peng Sun
- Institute for Viral Disease Control and Prevention, Shandong Provincial Key Laboratory of Communicable Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
| | - Quan-Rong Zhu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Lin-Yi Chen
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Chen Ye
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Shuai Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Ya-Qiong Liu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Fuqiang Cui
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| |
Collapse
|