1
|
Xu Y, Peng W, Han D, Feng F, Wang Z, Gu C, Zhou X, Wu Q. Maiwei Yangfei decoction prevents bleomycin-induced pulmonary fibrosis in mice. Exp Ther Med 2021; 22:1306. [PMID: 34630661 PMCID: PMC8461617 DOI: 10.3892/etm.2021.10741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
Maiwei Yangfei (MWYF) is a compound Chinese herb that is safe and effective in the clinical setting in patients with pulmonary fibrosis (PF). The aim of the present study was to assess the role of a (MWYF) decoction in a bleomycin (BLM)-induced PF mouse model and to investigate the underlying functional mechanism. Chemical components within the MWYF decoction were analysed using liquid chromatography-mass spectrometry. A total of 50 C57BL/6 mice were randomly assigned to one of the following five groups with 10 mice per group: Control, model, low dose MWYF (20 g/kg), medium dose MWYF (40 g/kg) and high dose MWYF (60 g/kg). A mouse PF model was established by the tracheal instillation of BLM (5 mg/kg) prior to MWYF treatment, except for mice in the control group. After 21 days of treatment with MWYF, the mice were sacrificed and the body weights were recorded. In addition, pulmonary tissues and bronchial alveolar lavage fluid were collected. TNF-α, IL-6, IL-17, hydroxyproline, pyridinoline and collagen I levels were determined using ELISA. Vimentin, α-smooth muscle actin (α-SMA), fibronectin, TGF-β1, Smad3, TNF-α, IL-6, IL-17, collagen I and collagen III were determined using western blotting. Vimentin and α-SMA levels were also determined using immunofluorescence analysis. Collagens I and III were detected using immunohistochemical analysis and TGF-β1 and Smad3 levels were determined using reverse transcription-quantitative PCR. Following treatment with MWYF decoction, the body weight of the mice in the PF group increased, the degree of pulmonary alveolitis and PF was reduced, collagen levels were reduced and the expression levels of α-SMA, vimentin and fibronectin were decreased. Although both protein and mRNA expression levels of TGF-β1 and Smad3 were reduced, they remained higher than those observed in the control group. To conclude, MWYF decoction delayed the development of BLM-induced PF in mice, where the functional mechanism was likely associated with the TGF-β1/Smad3 signalling pathway.
Collapse
Affiliation(s)
- Yong Xu
- Department of Respiratory and Critical Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Wenpan Peng
- Department of Respiratory and Critical Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Di Han
- Department of Respiratory and Critical Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Fanchao Feng
- Department of Respiratory and Critical Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China.,Department of Respiratory and Critical Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Zhichao Wang
- Department of Respiratory and Critical Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Cheng Gu
- Department of Respiratory and Critical Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Xianmei Zhou
- Department of Respiratory and Critical Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China.,Department of Respiratory and Critical Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Qi Wu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
2
|
Jiang W, Cao M, Zhang Y, Gu L, PuYang J, Liu M, Xia Q. Systems bioinformatic approach to determine the pharmacological mechanisms of radix astragali and radix angelicae sinensis in idiopathic pulmonary fibrosis. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_9_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
3
|
Zhang Y, Gu L, Xia Q, Tian L, Qi J, Cao M. Radix Astragali and Radix Angelicae Sinensis in the Treatment of Idiopathic Pulmonary Fibrosis: A Systematic Review and Meta-analysis. Front Pharmacol 2020; 11:415. [PMID: 32425767 PMCID: PMC7203419 DOI: 10.3389/fphar.2020.00415] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/18/2020] [Indexed: 02/02/2023] Open
Abstract
Introduction There are many clinical studies in the treatment of idiopathic pulmonary fibrosis (IPF) with herbal medicine including Astragalus mongholicus Bunge, Radix Astragali (RA) and Angelica sinensis (Oliv.) Diels, Radix Angelicae Sinensis (RAS). These have obtained good curative effect. There is no systematic evaluation on the clinical efficacy of RA and RAS in patients with IPF. The aim of this systematic review and meta-analysis was to critically evaluate the current evidence of efficacy and safety of RA and RAS in IPF. Methods We searched the primary database for randomized controlled trial (RCT) of RA and RAS treating IPF. We assessed the quality of included studies using the Jadad rating scale and referred to the Cochrane Reviewer's Handbook for guidelines to assess the risk of bias. We extracted the main outcomes of included RCTs and a meta-analysis was conducted using the Cochrane Collaboration's RevMan5.3 software. Results Seventeen eligible RCTs were identified and made a systematic review and meta-analysis. Risk of bias and quality of included RCTs were carried out. The results of meta-analysis showed that total effective rate and traditional Chinese medicine syndrome effective rate were statistically significantly higher in the experimental group than the control group, main pulmonary function index, six minute walking distance and Borg scale questionnaire score were statistically significantly better in the experimental group than the control group and incidence of adverse reactions was statistically significantly lower in the experimental group than the control group. Conclusion RA and RAS are effective and safe in the treatment of IPF, which is beneficial to pulmonary function and exercise tolerance of these patients.
Collapse
Affiliation(s)
- Yufeng Zhang
- Department of Respiratory Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China.,Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lina Gu
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qingqing Xia
- Department of Respiratory Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Lijun Tian
- Department of Critical Care Medicine, Nantong Third People's Hospital, Nantong University, Nantong, China
| | - Jia Qi
- Department of Pharmacy, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengshu Cao
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
4
|
The Effects of Lung-Moistening Herbal Medicines on Bleomycin-Induced Pulmonary Fibrosis Mouse Model. Processes (Basel) 2020. [DOI: 10.3390/pr8010102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In traditional medicine, lung-moistening herbal medicines (LMHM) are regarded as a major option for treating symptoms of pulmonary fibrosis (PF) including dry cough and dyspnea. As PF agents are being applied to the development of lung cancer agents, PF and lung cancer are reported to have high pathological and pharmacological relationships. This study was proposed to identify candidates for the treatment of PF via investigating the effect of LMHM on PF mouse model. PF was induced by intratracheal instillation of bleomycin. Six water extracts of LMHM such as Farfarae Flos (FAF), Trichosanthis Semen (TRS), Lilii Bulbus (LIB), Adenophorae Radix (ADR), Asteris Radix (ASR), and Scrophulariae Radix (SCR) were prepared and administered (300 mg/kg) orally for 10 days after induction. The changes in body weight, histopathology, and immune cell of bronchoalveolar lavage fluid (BALF) were investigated. Among those, LIB and ADR significantly decreased the deposition of collagen and septal thickness of alveolar and terminal bronchiole. Moreover, SCR, TRS, LIB, and ADR decreased total cells, macrophages, and lymphocytes in BALF. Taken together, ADR and LIB could be the candidates to reduce PF. Further studies on their effects at different doses and analysis of their underlying molecular mechanisms are needed.
Collapse
|
5
|
Liu G, Zhai H, Zhang T, Li S, Li N, Chen J, Gu M, Qin Z, Liu X. New therapeutic strategies for IPF: Based on the "phagocytosis-secretion-immunization" network regulation mechanism of pulmonary macrophages. Biomed Pharmacother 2019; 118:109230. [PMID: 31351434 DOI: 10.1016/j.biopha.2019.109230] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/19/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022] Open
Abstract
Pulmonary fibrosis is a chronic and progressive interstitial lung disease of known and unknown etiology. Over the past decades, macrophages have been recognized to play a significant role in IPF pathogenesis. According to their anatomical loci, macrophages can be divided to alveolar macrophages (AMs) subtypes and interstitial macrophages subtypes (IMs) with different responsibility in the damage defense response. Depending on diverse chemokines and cytokines in local microenvironments, macrophages can be induced and polarized to either classically activated (M1) or alternatively activated (M2) phenotypes in different stages of immunity. Therefore, we hypothesize that there is a "phagocytosis-secretion-immunization" network regulation of pulmonary macrophages related to a number of chemokines and cytokines. In this paper, we summarize and discuss the role of chemokines and cytokines involved in the "phagocytosis-secretion-immunization" network regulation mechanism of pulmonary macrophages, pointing toward novel therapeutic approaches based on the network target regulation in the field. Therapeutic strategies focused on modifying the chemokines, cytokines and the network are promising for the pharmacotherapy of IPF. Some Traditional Chinese medicines may have more superiorities in delaying the progression of pulmonary fibrosis for their multi-target activities of this network regulation.
Collapse
Affiliation(s)
- Guoxiu Liu
- Beijing University of Chinese Medicine, China
| | | | | | - Siyu Li
- Beijing University of Chinese Medicine, China
| | - Ningning Li
- Beijing University of Chinese Medicine, China
| | - Jiajia Chen
- Beijing University of Chinese Medicine, China
| | - Min Gu
- Beijing University of Chinese Medicine, China
| | - Zinan Qin
- Beijing University of Chinese Medicine, China
| | - Xin Liu
- Beijing University of Chinese Medicine, China.
| |
Collapse
|