1
|
Xie Y, Xie L, Qiu Z, He J, Jiang F, Cai M, Lin Y, Chen L. miR-485-3p targets SIRT1 in vascular smooth muscle cells mediating the occurrence of aortic dissection. J Cell Mol Med 2024; 28:e18454. [PMID: 39010253 PMCID: PMC11250145 DOI: 10.1111/jcmm.18454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 07/17/2024] Open
Abstract
Studies have demonstrated a close correlation between MicroRNA and the occurrence of aortic dissection (AD). However, the molecular mechanisms underlying this relationship have not been fully elucidated and further exploration is still required. In this study, we found that miR-485-3p was significantly upregulated in human aortic dissection tissues. Meanwhile, we constructed in vitro AD models in HAVSMCs, HAECs and HAFs and found that the expression of miR-485-3p was increased only in HAVSMCs. Overexpression or knockdown of miR-485-3p in HAVSMCs could regulate the expression of inflammatory cytokines IL1β, IL6, TNF-α, and NLRP3, as well as the expression of apoptosis-related proteins BAX/BCL2 and Cleaved caspase3/Caspase3. In the in vivo AD model, we have observed that miR-485-3p regulates vascular inflammation and apoptosis, thereby participating in the modulation of AD development in mice. Based on target gene prediction, we have validated that SIRT1 is a downstream target gene of miR-485-3p. Furthermore, by administering SIRT1 agonists and inhibitors to mice, we observed that the activation of SIRT1 alleviates vascular inflammation and apoptosis, subsequently reducing the incidence of AD. Additionally, functional reversal experiments revealed that overexpression of SIRT1 in HAVSMCs could reverse the cell inflammation and apoptosis mediated by miR-485-3p. Therefore, our research suggests that miR-485-3p can aggravate inflammation and apoptosis in vascular smooth muscle cells by suppressing the expression of SIRT1, thereby promoting the progression of aortic dissection.
Collapse
Affiliation(s)
- Yuling Xie
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouFujianP. R. China
- Key Laboratory of Cardio‐Thoracic Surgery (Fujian Medical University)Fujian Province UniversityFuzhouFujianP. R. China
| | - Linfeng Xie
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouFujianP. R. China
- Key Laboratory of Cardio‐Thoracic Surgery (Fujian Medical University)Fujian Province UniversityFuzhouFujianP. R. China
| | - Zhihuang Qiu
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouFujianP. R. China
- Key Laboratory of Cardio‐Thoracic Surgery (Fujian Medical University)Fujian Province UniversityFuzhouFujianP. R. China
| | - Jian He
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouFujianP. R. China
- Key Laboratory of Cardio‐Thoracic Surgery (Fujian Medical University)Fujian Province UniversityFuzhouFujianP. R. China
| | - Fei Jiang
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouFujianP. R. China
- Department of NursingFujian Medical University Union HospitalFuzhouFujianP. R. China
| | - Meiling Cai
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouFujianP. R. China
- Department of NursingFujian Medical University Union HospitalFuzhouFujianP. R. China
| | - Yanjuan Lin
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouFujianP. R. China
- Department of NursingFujian Medical University Union HospitalFuzhouFujianP. R. China
| | - Liangwan Chen
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouFujianP. R. China
- Key Laboratory of Cardio‐Thoracic Surgery (Fujian Medical University)Fujian Province UniversityFuzhouFujianP. R. China
| |
Collapse
|
2
|
Aranega AE, Franco D. Posttranscriptional Regulation by Proteins and Noncoding RNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:313-339. [PMID: 38884719 DOI: 10.1007/978-3-031-44087-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Posttranscriptional regulation comprises those mechanisms occurring after the initial copy of the DNA sequence is transcribed into an intermediate RNA molecule (i.e., messenger RNA) until such a molecule is used as a template to generate a protein. A subset of these posttranscriptional regulatory mechanisms essentially are destined to process the immature mRNA toward its mature form, conferring the adequate mRNA stability, providing the means for pertinent introns excision, and controlling mRNA turnover rate and quality control check. An additional layer of complexity is added in certain cases, since discrete nucleotide modifications in the mature RNA molecule are added by RNA editing, a process that provides large mature mRNA diversity. Moreover, a number of posttranscriptional regulatory mechanisms occur in a cell- and tissue-specific manner, such as alternative splicing and noncoding RNA-mediated regulation. In this chapter, we will briefly summarize current state-of-the-art knowledge of general posttranscriptional mechanisms, while major emphases will be devoted to those tissue-specific posttranscriptional modifications that impact on cardiac development and congenital heart disease.
Collapse
Affiliation(s)
- Amelia E Aranega
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Diego Franco
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain.
| |
Collapse
|
3
|
Yue Z, Wang DS, Le S, Xia JH, Ye P, Huang XF. Aortic Dissection Research in China: Analysis of Studies Funded by the National Natural Science Foundation of China. Curr Med Sci 2023; 43:206-212. [PMID: 36867363 DOI: 10.1007/s11596-022-2662-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/07/2021] [Indexed: 03/04/2023]
Abstract
OBJECTIVE The National Natural Science Foundation of China (NSFC) has made great progress in promoting the development of aortic dissection research in recent years. This study aimed to examine the development and research status of aortic dissection research in China so as to provide references for future research. METHODS The NSFC projects data from 2008 to 2019 were collected from the Internet-based Science Information System and other websites utilized as search engines. The publications and citations were retrieved by Google Scholar, and the impact factors were checked by the InCite Journal Citation Reports database. The investigator's degree and department were identified from the institutional faculty profiles. RESULTS A total of 250 grant funds totaling 124.3 million Yuan and resulting in 747 publications were analyzed. The funds in economically developed and densely populated areas were more than those in underdeveloped and sparsely populated areas. There was no significant difference in the amount of funding per grant between different departments' investigators. However, the funding output ratios of the grants for cardiologists were higher than those for basic science investigators. The amount of funding for clinical researchers and basic scientific researchers in aortic dissection was also similar. Clinical researchers were better in terms of the funding output ratio. CONCLUSION These results suggest that the medical and scientific research level of aortic dissection in China has been greatly improved. However, there are still some problems that urgently need to be solved, such as the unreasonable regional allocation of medical and scientific research resources, and the slow transition from basic science to clinical practice.
Collapse
Affiliation(s)
- Zhang Yue
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Da-Shuai Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Sheng Le
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia-Hong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Ping Ye
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
| | - Xiao-Fan Huang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
Upregulation of miR-222-3p alleviates the symptom of aortic dissection through targeting STAT3. Life Sci 2022; 310:121051. [DOI: 10.1016/j.lfs.2022.121051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
|
5
|
PENG H, WANG J, LI S. MiR-15a-5p accelerated vascular smooth muscle cells viabilities and migratory abilities via targeting Bcl-2. Physiol Res 2022; 71:667-675. [PMID: 36047726 PMCID: PMC9841801 DOI: 10.33549/physiolres.934914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aortic dissection (AD) caused by the tear in the aortic wall threatens aorta, causing severe chest pain, syncope and even death. Fortunately, development of genetic technology provides promising approaches for AD treatment. To analyze impacts of miR-15a-5p on modulating cell viability and migratory ability of vascular smooth muscle cells (VSMCs). Ang II (0, 0.05 and 0.1 microM) treatment were applied for inducing inflammatory reactions of VSMCs. RNA expressions of miR-15a-5p with Bcl-2 was examined using RT-qPCR. CCK-8 and transwell evaluated cell viability and migratory ability, respectively. The binding about miR-15a-5p with Bcl-2 were detected by luciferase reporter assay. Western blot detected protein expressions of Bcl-2, MCP-1 and MMP-9. Ang II treatment not only accelerated VSMCs viability and migratory abilities, but also upregulated MCP-1 and MMP-9 protein expressions. MiR-15a-5p was detected to be promoted by Ang II. However, miR-15a-5p inhibitor decreased VSMC cell viability and migratory ability and suppressed protein expressions of MCP-1 and MMP-9. Bcl-2 was targeted and downregulated by miR-15a-5p. Nevertheless, high VSMC cell viability and migration caused by miR-15a-5p overexpression were hindered with overexpressed Bcl-2. MiR-15a-5p mimics also elevated MCP-1 and MMP-9 protein expressions, which were inhibited by Bcl-2 upregulation.
Collapse
Affiliation(s)
- Hui PENG
- Department of Cardiac Surgery, Xingtai People’s Hospital, Xingtai, China
| | - Jianhua WANG
- Department of Cardiac Surgery, Xingtai People’s Hospital, Xingtai, China
| | - Shaohui LI
- Department of Cardiac Surgery, Xingtai People’s Hospital, Xingtai, China
| |
Collapse
|
6
|
Crucial Genes in Aortic Dissection Identified by Weighted Gene Coexpression Network Analysis. J Immunol Res 2022; 2022:7585149. [PMID: 35178459 PMCID: PMC8844153 DOI: 10.1155/2022/7585149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 12/07/2021] [Accepted: 12/31/2021] [Indexed: 01/01/2023] Open
Abstract
Background Aortic dissection (AD) is a lethal vascular disease with high mortality and morbidity. Though AD clinical pathology is well understood, its molecular mechanisms remain unclear. Specifically, gene expression profiling helps illustrate the potential mechanism of aortic dissection in terms of gene regulation and its modification by risk factors. This study was aimed at identifying the genes and molecular mechanisms in aortic dissection through bioinformatics analysis. Method Nine patients with AD and 10 healthy controls were enrolled. The gene expression in peripheral mononuclear cells was profiled through next-generation RNA sequencing. Analyses including differential expressed gene (DEG) via DEGseq, weighted gene coexpression network (WGCNA), and VisANT were performed to identify crucial genes associated with AD. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was also utilized to analyze Gene Ontology (GO). Results DEG analysis revealed that 1,113 genes were associated with AD. Of these, 812 genes were markedly reduced, whereas 301 genes were highly expressed, in AD patients. DEGs were rich in certain categories such as MHC class II receptor activity, MHC class II protein complex, and immune response genes. Gene coexpression networks via WGCNA identified 3 gene hub modules, with one positively and 2 negatively correlated with AD, respectively. Specifically, module 37 was the most strongly positively correlated with AD with a correlation coefficient of 0.72. Within module 37, five hub genes (AGFG1, MCEMP1, IRAK3, KCNE1, and CLEC4D) displayed high connectivity and may have clinical significance in the pathogenesis of AD. Conclusion Our analysis provides the possible association of specific genes and gene modules for the involvement of the immune system in aortic dissection. AGFG1, MCEMP1, IRAK3, KCNE1, and CLEC4D in module M37 were highly connected and strongly linked with AD, suggesting that these genes may help understand the pathogenesis of aortic dissection.
Collapse
|
7
|
Shao Y, Luo J, Ye L, Ran HY, Shi HM, Zhang C, Wu QC. Construction and Integrated Analysis of Competitive Endogenous Long Non-Coding RNA Network in Thoracic Aortic Dissection. Int J Gen Med 2021; 14:6863-6873. [PMID: 34703291 PMCID: PMC8528547 DOI: 10.2147/ijgm.s335082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) can act as a competitive endogenous RNA (ceRNA) to regulate gene expression by sequestering the microRNA (miRNA). However, the lncRNA-miRNA-mRNA ceRNA network in thoracic aortic dissection (TAD) has been rarely documented. Methods Three Gene Expression Omnibus (GEO) datasets were used to detect differentially expressed mRNAs, miRNAs, and lncRNAs in TAD. Gene ontology and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted for the differentially expressed mRNAs. A protein–protein interaction network for differentially expressed mRNAs was also constructed, and hub genes were identified. We established a ceRNA network of TAD based on the differentially expressed miRNAs, mRNAs and lncRNAs, and verified our results using an independent dataset and quantitative real-time PCR (qRT-PCR). Results In TAD, 267 lncRNAs, 81 miRNAs, and 346 mRNAs were identified as differentially expressed. The established ceRNA network consisted of seven lncRNA nodes, three mRNA nodes, and three miRNA nodes, and the expression of miRNAs in TAD was opposite to that of lncRNAs and mRNAs. Subsequently, an independent GEO dataset and qRT-PCR were used to validate the expression of three mRNAs. In addition, the expression differences in SLC7A5, associated miRNA and lncRNA were verified. According to gene set enrichment analysis of SLC7A5, the most significant KEGG pathway was considerably enriched in spliceosome and pentose phosphate pathway. Conclusion We established a novel ceRNA regulatory network in TAD, which provides valuable information for further research in the molecular mechanisms of TAD.
Collapse
Affiliation(s)
- Yue Shao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jun Luo
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Liu Ye
- The First Branch, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hao-Yu Ran
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hao-Ming Shi
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Qing-Chen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
8
|
Cheng M, Yang Y, Xin H, Li M, Zong T, He X, Yu T, Xin H. Non-coding RNAs in aortic dissection: From biomarkers to therapeutic targets. J Cell Mol Med 2020; 24:11622-11637. [PMID: 32885591 PMCID: PMC7578866 DOI: 10.1111/jcmm.15802] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/13/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022] Open
Abstract
Aortic dissection (AD) is the rupture of the aortic intima, causing the blood in the cavity to enter the middle of the arterial wall. Without urgent and proper treatment, the mortality rate increases to 50% within 48 hours. Most patients present with acute onset of symptoms, including sudden severe pain and complex and variable clinical manifestations, which can be easily misdiagnosed. Despite this, the molecular mechanisms underlying AD are still unknown. Recently, non‐coding RNAs have emerged as novel regulators of gene expression. Previous studies have proven that ncRNAs can regulate several cardiovascular diseases; therefore, their potential as clinical biomarkers and novel therapeutic targets for AD has aroused widespread interest. To date, several studies have reported that microRNAs are crucially involved in AD progression. Additionally, several long non‐coding RNAs and circular RNAs have been found to be differentially expressed in AD samples, suggesting their potential roles in vascular physiology and disease. In this review, we discuss the functions of ncRNAs in AD pathophysiology and highlight their potential as biomarkers and therapeutic targets for AD. Meanwhile, we present the animal models previously used for AD research, as well as the specific methods for constructing mouse or rat AD models.
Collapse
Affiliation(s)
- Mengdie Cheng
- Department of Cardiology, The Affiliated hospital of Qingdao University, Qingdao, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hai Xin
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xingqiang He
- Department of Cardiology, The Affiliated hospital of Qingdao University, Qingdao, China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Xin
- Department of Cardiology, The Affiliated hospital of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Liang Z, Wang L, Wu H, Singh D, Zhang X. Integrative analysis of microRNA and mRNA expression profiles in MARC-145 cells infected with PRRSV. Virus Genes 2020; 56:610-620. [PMID: 32785889 DOI: 10.1007/s11262-020-01786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/05/2020] [Indexed: 10/23/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes tremendous economic losses to the swine industry worldwide. miRNAs are crucial regulators of gene expression and a wide range of complex interactions of miRNAs-mRNAs is possible during virus infection. However, there is no comprehensive integrated study of miRNA and mRNA networks in MARC-145 cells after infection with PRRSV. We analyzed the differential expressions, co-relations, annotations, and putative functions of miRNA and mRNA networks in PRRSV-infected MARC-145 cells. Based on the filtering criterion, 22 differentially expressed miRNAs (DEmiRs) (15 up- and 7 downregulated) were filtered out. miRNA-mRNA interaction networks were constructed. For the 18 selected miRNAs, 390 potential target genes were predicted from the differentially expressed mRNAs (DEmRs). GO and KEGG pathway annotations predicted 34 KEGG pathways, 12 of which are known to be involved in virus infection. Real-time PCR validated the RNA-seq results. Our analysis showed that miR-27a-5p and miR-21-3p downregulate the expression of two of their potential target genes-SPARC, CLIC1, and cofilin-1, COX7A2, respectively. Further experiments proved that miR-21-3p and miR-27a-5p can promote PRRSV replication significantly. It is the first report that these two miRNAs participate in the interaction of host cells with PRRSV. Our results provide insights into the role of miRNAs in response to PRRSV infection, which will aid the research for developing novel therapies against PRRSV.
Collapse
Affiliation(s)
- Zhenpu Liang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450000, China
| | - Liang Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450000, China
| | - Hui Wu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450000, China
| | - Deepali Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201312, India
| | - Xiaoxia Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450000, China.
| |
Collapse
|