1
|
Lu K, Chiu KY, Chen IC, Lin GC. Identification of GTF2I Polymorphisms as Potential Biomarkers for CKD in the Han Chinese Population : Multicentric Collaborative Cross-Sectional Cohort Study. KIDNEY360 2024; 5:1466-1476. [PMID: 39024039 PMCID: PMC11556913 DOI: 10.34067/kid.0000000000000517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Key Points Genetic factors are key players in CKD, with two linked single-nucleotide polymorphisms in the GTF2I gene, associated with CKD susceptibility in the Taiwanese population. Individuals with specific GTF2I genotypes (CT/TT for rs117026326 and CT/CC for rs73366469) show higher CKD prevalence and earlier onset. Men with the specific genotypes of rs117026326 and rs73366469 face a heightened CKD risk compared with women, particularly at lower eGFR. Background CKD poses a global health challenge, but its molecular mechanisms are poorly understood. Genetic factors play a critical role, and phenome-wide association studies and genome-wide association studies shed light on CKD's genetic architecture, shared variants, and biological pathways. Methods Using data from the multicenter collaborative precision medicine cohort, we conducted a retrospective prospectively maintained cross-sectional study. Participants with comprehensive information and genotyping data were selected, and genome-wide association study and phenome-wide association study analyses were performed using the curated Taiwan Biobank version 2 array to identify CKD-associated genetic variants and explore their phenotypic associations. Results Among 58,091 volunteers, 8420 participants were enrolled. Individuals with CKD exhibited higher prevalence of metabolic, cardiovascular, autoimmune, and nephritic disorders. Genetic analysis unveiled two closely linked single-nucleotide polymorphisms, rs117026326 and rs73366469, both associated with GTF2I and CKD (r 2 = 0.64). Further examination revealed significant associations between these single-nucleotide polymorphisms and various kidney-related diseases. The CKD group showed a higher proportion of individuals with specific genotypes (CT/TT for rs117026326 and CT/CC for rs73366469), suggesting potential associations with CKD susceptibility (P < 0.001). Furthermore, individuals with these genotypes developed CKD at an earlier age. Multiple logistic regression confirmed the independent association of these genetic variants with CKD. Subgroup analysis based on eGFR demonstrated an increased risk of CKD among carriers of the rs117026326 CT/TT genotypes (odds ratio [OR], 1.15; 95% confidence interval [CI], 1.07 to 1.24; P < 0.001; OR, 1.32, 95% CI, 1.04 to 1.66; P = 0.02, respectively) and carriers of the rs73366469 CT/CC genotypes (OR, 1.13; 95% CI, 1.05 to 1.21; P < 0.001; OR, 1.31; 95% CI, 1.08 to 1.58; P = 0.0049, respectively). In addition, men had a higher CKD risk than women at lower eGFR levels (OR, 1.35; 95% CI, 1.13 to 1.61; P < 0.001). Conclusions Our study reveals important links between genetic variants GTF2I and susceptibility to CKD, advancing our understanding of CKD development in the Taiwanese population and suggesting potential for personalized prevention and management strategies. More research is needed to validate and explore these variants in diverse populations.
Collapse
Affiliation(s)
- Kevin Lu
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Kun-Yuan Chiu
- Department of Urology, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - I-Chieh Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Guan-Cheng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
2
|
Nir Sade A, Levy G, Schokoroy Trangle S, Elad Sfadia G, Bar E, Ophir O, Fischer I, Rokach M, Atzmon A, Parnas H, Rosenberg T, Marco A, Elroy Stein O, Barak B. Neuronal Gtf2i deletion alters mitochondrial and autophagic properties. Commun Biol 2023; 6:1269. [PMID: 38097729 PMCID: PMC10721858 DOI: 10.1038/s42003-023-05612-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Gtf2i encodes the general transcription factor II-I (TFII-I), with peak expression during pre-natal and early post-natal brain development stages. Because these stages are critical for proper brain development, we studied at the single-cell level the consequences of Gtf2i's deletion from excitatory neurons, specifically on mitochondria. Here we show that Gtf2i's deletion resulted in abnormal morphology, disrupted mRNA related to mitochondrial fission and fusion, and altered autophagy/mitophagy protein expression. These changes align with elevated reactive oxygen species levels, illuminating Gtf2i's importance in neurons mitochondrial function. Similar mitochondrial issues were demonstrated by Gtf2i heterozygous model, mirroring the human condition in Williams syndrome (WS), and by hemizygous neuronal Gtf2i deletion model, indicating Gtf2i's dosage-sensitive role in mitochondrial regulation. Clinically relevant, we observed altered transcript levels related to mitochondria, hypoxia, and autophagy in frontal cortex tissue from WS individuals. Our study reveals mitochondrial and autophagy-related deficits shedding light on WS and other Gtf2i-related disorders.
Collapse
Affiliation(s)
- Ariel Nir Sade
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Gilad Levy
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sari Schokoroy Trangle
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Galit Elad Sfadia
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Omer Ophir
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Inbar Fischer
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - May Rokach
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Andrea Atzmon
- The Shmunis School of Biomedicine & Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hadar Parnas
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tali Rosenberg
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Asaf Marco
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Orna Elroy Stein
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Shmunis School of Biomedicine & Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Barak
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
3
|
Shu Y, Ma X, Chen C, Wang Y, Sun X, Zhang L, Lu Z, Petersen F, Qiu W, Yu X. Myelin oligodendrocyte glycoprotein-associated disease is associated with BANK1, RNASET2 and TNIP1 polymorphisms. J Neuroimmunol 2022; 372:577937. [PMID: 36054934 DOI: 10.1016/j.jneuroim.2022.577937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 12/31/2022]
Abstract
AIM Here we aimed to compare association of common immune-related genetic variants with three autoimmune central nervous system (CNS) demyelinating diseases, namely myelin oligodendrocyte glycoprotein-associated disease (MOGAD), multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). METHODS In this retrospective cross-sectional study, 26 common immune-related single nucleotide polymorphisms were genotyped in 102 patients with MOGAD, 100 patients with MS, 198 patients with NMOSD and 541 healthy control subjects recruited from Guangzhou, China. RESULTS Among all tested genetic variations, one polymorphism, B cell scaffold protein with ankyrin repeats 1 (BANK1) rs4522865 was associated with multiple disorders, namely MOGAD (OR = 1.94, 95% CI:1.19-3.17, P = 0.0059) and NMOSD (OR = 1.69, 95% CI:1.17-2.45). Besides BANK1 rs4522865, two other non-HLA loci, ribonuclease T2 (RNASET2) rs9355610 (OR = 0.47, 95% CI: 0.26-0.85) and TNFAIP3 interacting protein 1 (TNIP1) rs10036748 (OR = 1.76, 95% CI: 1.16-2.71), were associated with MOGAD. In addition, NMOSD was associated with signal transducer and activator of transcription 4 (STAT4) rs7574865 (OR = 1.58, 95% CI: 1.12-2.24) and general transcription factor Iii (GTF2I) rs73366469 (OR = 1.60, 95% CI:1.12-2.29), while MS was associated with a killer cell lectin like receptor G1 (KLRG1) rs1805673 (OR = 0.61, 95% CI: 0.40-0.94) and T-box transcription factor 21 (TBX21) rs17244587 (OR = 2.25, 95% CI: 1.25-4.06). CONCLUSION The current study suggests for the first time three non-HLA susceptibility loci for MOGAD. In addition, comparison of association of 26 immune-related polymorphisms with three autoimmune CNS demyelinating diseases demonstrates substantial difference in genetic basis of those disorders.
Collapse
Affiliation(s)
- Yaqing Shu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyu Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chen Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaobo Sun
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Liang Zhang
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Frank Petersen
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Xinhua Yu
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.
| |
Collapse
|
4
|
Zhang L, Wax J, Huang R, Petersen F, Yu X. Meta-Analysis and Systematic Review of the Association between a Hypoactive NCF1 Variant and Various Autoimmune Diseases. Antioxidants (Basel) 2022; 11:1589. [PMID: 36009308 PMCID: PMC9404811 DOI: 10.3390/antiox11081589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Genetic association studies have discovered the GTF2I-NCF1 intergenic region as a strong susceptibility locus for multiple autoimmune disorders, with the missense mutation NCF1 rs201802880 as the causal polymorphism. In this work, we aimed to perform a comprehensive meta-analysis of the association of the GTF2I-NCF1 locus with various autoimmune diseases and to provide a systemic review on potential mechanisms underlying the effect of the causal NCF1 risk variants. The frequencies of the two most extensively investigated polymorphisms within the locus, GTF2I rs117026326 and NCF1 rs201802880, vary remarkably across the world, with the highest frequencies in East Asian populations. Meta-analysis showed that the GTF2I-NCF1 locus is significantly associated with primary Sjögren's syndrome, systemic lupus erythematosus, systemic sclerosis, and neuromyelitis optica spectrum disorder. The causal NCF1 rs201802880 polymorphism leads to an amino acid substitution of p.Arg90His in the p47phox subunit of the phagocyte NADPH oxidase. The autoimmune disease risk His90 variant results in a reduced ROS production in phagocytes. Clinical and experimental evidence shows that the hypoactive His90 variant might contribute to the development of autoimmune disorders via multiple mechanisms, including impairing the clearance of apoptotic cells, regulating the mitochondria ROS-associated formation of neutrophil extracellular traps, promoting the activation and differentiation of autoreactive T cells, and enhancing type I IFN responses. In conclusion, the identification of the association of NCF1 with autoimmune disorders demonstrates that ROS is an essential regulator of immune tolerance and autoimmunity mediated disease manifestations.
Collapse
Affiliation(s)
- Liang Zhang
- Priority Area Chronic Lung Diseases, Research Center Borstel, Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Jacqueline Wax
- Priority Area Chronic Lung Diseases, Research Center Borstel, Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Renliang Huang
- Hainan Women and Children’s Medical Center, Haikou 571100, China
| | - Frank Petersen
- Priority Area Chronic Lung Diseases, Research Center Borstel, Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Xinhua Yu
- Priority Area Chronic Lung Diseases, Research Center Borstel, Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| |
Collapse
|
5
|
Manti PG, Trattaro S, Castaldi D, Pezzali M, Spaggiari L, Testa G. Thymic stroma and TFII-I: towards new targeted therapies. Trends Mol Med 2021; 28:67-78. [PMID: 34865984 DOI: 10.1016/j.molmed.2021.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022]
Abstract
Thymic epithelial tumors (TETs) have been characterized at the molecular level through bioptic sections and cell lines. Despite these advances, there is a need for a more thorough characterization of the thymic stroma in thymoma, particularly because of the diversity of cell types that populate the tumor and the absence of a healthy thymic counterpart. Recent work on healthy pediatric thymi - both in vitro and at the single-cell level - now sets the stage for new studies on their neoplastic counterparts. Furthermore, general transcription factor IIi (GTF2I), a thymoma-specific oncogene, as well as some of its SNPs, are increasingly associated with autoimmune disease, a significant feature of thymomas. We summarize recent discoveries in the field and discuss the development of new targeted therapies.
Collapse
Affiliation(s)
- Pierluigi Giuseppe Manti
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Adamello 16, 20139, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy.
| | - Sebastiano Trattaro
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Adamello 16, 20139, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy
| | - Davide Castaldi
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Adamello 16, 20139, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Martina Pezzali
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Adamello 16, 20139, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Lorenzo Spaggiari
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Division of Thoracic Surgery, European Institute of Oncology-IRCSS, Via Ripamonti 435, 20141 Milan, Italy
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Adamello 16, 20139, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy.
| |
Collapse
|
6
|
Liu C, Yan S, Chen H, Wu Z, Li L, Cheng L, Li H, Li Y. Association of GTF2I, NFKB1, and TYK2 Regional Polymorphisms With Systemic Sclerosis in a Chinese Han Population. Front Immunol 2021; 12:640083. [PMID: 34248934 PMCID: PMC8261294 DOI: 10.3389/fimmu.2021.640083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/07/2021] [Indexed: 12/03/2022] Open
Abstract
Objectives Systemic sclerosis (SSc) is an uncommon autoimmune disease that varies with ethnicity. Single nucleotide polymorphisms (SNPs) in the GTFSI, NFKB1, and TYK2 genes have been reported to be associated with SSc in other populations and in individuals with various autoimmune diseases. This study aimed to investigate the association between these SNPs and susceptibility to SSc in a Chinese Han population. Method A case-control study was performed in 343 patients with SSc and 694 ethnically matched healthy controls. SNPs in GTF2I, NFKB1, and TYK2 were genotyped using a Sequenom MassArray iPLEX system. Association analyses were performed using PLINK v1.90 software. Result Our study demonstrated that the GTF2I rs117026326 T allele and the GTF2I rs73366469 C allele were strongly associated with patients with SSc (P = 6.97E-10 and P = 1.33E-08, respectively). Patients carrying the GTF2I rs117026326 TT genotype and the GTF2I rs73366469 CC genotype had a strongly increased risk of SSc (P = 6.25E-09 and P = 1.67E-08, respectively), and those carrying the NFKB1 rs1599961 AA genotype had a suggestively significantly increased risk of SSc (P = 0.014). Moreover, rs117026326 and rs73366469 were associated with SSc in different genetic models (additive model, dominant model, and recessive model) (P < 0.05) whereas rs1599961 was associated with SSc in the dominant genetic model but not in the addictive and recessive models (P = 0.0026). TYK2 rs2304256 was not significantly associated with SSc in this study. Conclusion GTF2I rs117026326 and rs73366469 SNPs were strongly associated with SSc in this Chinese Han population. NFKB1 rs1599961 showed a suggestive association with SSc, and no significant association was found between TYK2 rs2304256 and SSc in this Chinese Han population.
Collapse
Affiliation(s)
- Chenxi Liu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Songxin Yan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haizhen Chen
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,Department of Clinical Laboratory, The First Hospital of Jilin University, Jilin, China
| | - Ziyan Wu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liubing Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linlin Cheng
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haolong Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Legrand M, Jourdan ML, Tallet A, Collin C, Audard V, Larousserie F, Aubert S, Gomez-Brouchet A, Bouvier C, de Pinieux G. Novel partners of USP6 gene in a spectrum of bone and soft tissue lesions. Virchows Arch 2021; 479:147-156. [PMID: 33558945 DOI: 10.1007/s00428-021-03047-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/10/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022]
Abstract
Nodular fasciitis, primary aneurysmal bone cyst, myositis ossificans, and their related lesions are benign tumors that share common histological features and a chromosomal rearrangement involving the ubiquitin-specific peptidase 6 (USP6) gene. The identification of an increasing number of new partners implicated in USP6 rearrangements demonstrates a complex tumorogenesis of this tumor spectrum. In this study on a series of 77 tumors (28 nodular fasciitis, 42 aneurysmal bone cysts, and 7 myositis ossificans) from the database of the French Sarcoma Group, we describe 7 new partners of the USP6 gene. For this purpose, rearrangements were first researched by multiplexed RT-qPCRs in the entire population. A targeted RNA sequencing was then used on samples selected according to a high USP6-transcription level expression estimated by RT-qPCR. Thanks to this multistep approach, besides the common USP6 fusions observed, we detected novel USP6 partners: PDLIM7 and MYL12A in nodular fasciitis and TPM4, DDX17, GTF2I, KLF3, and MEF2A in aneurysmal bone cysts. In order to try to bring to light the role played by the recently identified USP6 partners in this lesional spectrum, their functions are discussed. Taking into account that a traumatic participation has long been mentioned in the histogenesis of most of these lesions and because of their morphological resemblance to organizing granulation reparative tissue or callus, a focus is placed on their relationship with tissue remodeling and, to a lesser extent, with bone metabolism.
Collapse
Affiliation(s)
- Mélanie Legrand
- Service d'anatomie et cytologie pathologiques, CHRU de Tours, Avenue de la République, 37044 Cedex 9, Tours, France
| | - Marie-Lise Jourdan
- Plateforme de Génétique moléculaire des cancers, CHRU de Tours, Tours, France
| | - Anne Tallet
- Plateforme de Génétique moléculaire des cancers, CHRU de Tours, Tours, France
| | - Christine Collin
- Plateforme de Génétique moléculaire des cancers, CHRU de Tours, Tours, France
| | - Virginie Audard
- Service d'anatomie et cytologie pathologiques, Hôpital Cochin, Paris, France
| | | | - Sébastien Aubert
- Service d'anatomie et cytologie pathologiques, CHU de Lille, Lille, France
| | | | - Corinne Bouvier
- Service d'anatomie et cytologie pathologiques, CHU de Marseille La Timone, Marseille, France
| | - Gonzague de Pinieux
- Service d'anatomie et cytologie pathologiques, CHRU de Tours, Avenue de la République, 37044 Cedex 9, Tours, France. .,PRES Centre-Val de Loire Université, Université François-Rabelais de Tours, Tours, France.
| |
Collapse
|
8
|
Abstract
The GTF2I is a general transcription factor and its mutations have been reported to be recurrent in thymic epithelial tumours and are rare in other malignancies. Apart from thymic epithelial tumours, these mutations have also been reported in a subgroup of T cell lymphomas, angioimmunoblastic T cell lymphomas. Soft tissue angiofibroma has been reported to harbour GTF2I-NCOA2 fusion, whereas GTF2I partners with Retinoic acid receptor alpha (RARA) in acute promyelocytic leukaemia as GTF2I-RARA GTF2I has also been implicated in immune disorders and two neuropsychiatric genetic disorders, namely autism and Williams-Beuren syndrome. The various structural, biochemical and functional properties of GTF2I suggest towards the oncogenic nature of this gene. Studies involving patients are presently few and the availability of biospecimens amenable to molecular diagnostic studies is limited. Future studies involving biospecimens and transformed cell lines shall provide a clear understanding of the GTF2I mechanistic to eventually lead to targeted treatment.
Collapse
Affiliation(s)
- Shrinidhi Nathany
- Molecular Diagnostics, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India
| | - Rupal Tripathi
- Department of Research, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India
| | - Anurag Mehta
- Department of Laboratory Services, Molecular Diagnostics and Transfusion Medicine, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India
| |
Collapse
|
9
|
Tangtanatakul P, Thumarat C, Satproedprai N, Kunhapan P, Chaiyasung T, Klinchanhom S, Wang YF, Wei W, Wongshinsri J, Chiewchengchol D, Rodsaward P, Ngamjanyaporn P, Suangtamai T, Mahasirimongkol S, Pisitkun P, Hirankarn N. Meta-analysis of genome-wide association study identifies FBN2 as a novel locus associated with systemic lupus erythematosus in Thai population. Arthritis Res Ther 2020; 22:185. [PMID: 32771030 PMCID: PMC7414652 DOI: 10.1186/s13075-020-02276-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/26/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Differences in the expression of variants across ethnic groups in the systemic lupus erythematosus (SLE) patients have been well documented. However, the genetic architecture in the Thai population has not been thoroughly examined. In this study, we carried out genome-wide association study (GWAS) in the Thai population. METHODS Two GWAS cohorts were independently collected and genotyped: discovery dataset (487 SLE cases and 1606 healthy controls) and replication dataset (405 SLE cases and 1590 unrelated disease controls). Data were imputed to the density of the 1000 Genomes Project Phase 3. Association studies were performed based on different genetic models, and pathway enrichment analysis was further examined. In addition, the performance of disease risk estimation for individuals in Thai GWAS was assessed based on the polygenic risk score (PRS) model trained by other Asian populations. RESULTS Previous findings on SLE susceptible alleles were well replicated in the two GWAS. The SNPs on HLA class II (rs9270970, A>G, OR = 1.82, p value = 3.61E-26), STAT4 (rs7582694, C>G, OR = 1.57, p value = 8.21E-16), GTF2I (rs73366469, A>G, OR = 1.73, p value = 2.42E-11), and FAM167A-BLK allele (rs13277113, A>G, OR = 0.68, p value = 1.58E-09) were significantly associated with SLE in Thai population. Meta-analysis of the two GWAS identified a novel locus at the FBN2 that was specifically associated with SLE in the Thai population (rs74989671, A>G, OR = 1.54, p value = 1.61E-08). Functional analysis showed that rs74989671 resided in a peak of H3K36me3 derived from CD14+ monocytes and H3K4me1 from T lymphocytes. In addition, we showed that the PRS model trained from the Chinese population could be applied in individuals of Thai ancestry, with the area under the receiver-operator curve (AUC) achieving 0.76 for this predictor. CONCLUSIONS We demonstrated the genetic architecture of SLE in the Thai population and identified a novel locus associated with SLE. Also, our study suggested a potential use of the PRS model from the Chinese population to estimate the disease risk for individuals of Thai ancestry.
Collapse
Affiliation(s)
- Pattarin Tangtanatakul
- Department of Transfusion Sciences and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chisanu Thumarat
- Section of Translational Medicine, Faculty of Medicine, Mahidol University, Ramathibodi Hospital, Bangkok, Thailand
| | - Nusara Satproedprai
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Punna Kunhapan
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | | | - Siriwan Klinchanhom
- Centre of Excellent in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Ratchadamri Road, Pathum wan, Bangkok, 10330, Thailand
| | - Yong-Fei Wang
- Department of Paediatrics and Adolescent Medicine, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Sandy Bay, Hong Kong
- Shenzhen Futian Hospital for Rheumatic Disease, Shenzhen, People's Republic of China
| | - Wei Wei
- Lupus Research Institute, Affiliated Hospital of Jining Medical University, Jining, China
- Collaborative Innovation Centre for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
| | | | - Direkrit Chiewchengchol
- Centre of Excellent in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Ratchadamri Road, Pathum wan, Bangkok, 10330, Thailand
| | - Pongsawat Rodsaward
- Centre of Excellent in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Ratchadamri Road, Pathum wan, Bangkok, 10330, Thailand
| | - Pintip Ngamjanyaporn
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thanitta Suangtamai
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Prapaporn Pisitkun
- Section of Translational Medicine, Faculty of Medicine, Mahidol University, Ramathibodi Hospital, Bangkok, Thailand
| | - Nattiya Hirankarn
- Centre of Excellent in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Ratchadamri Road, Pathum wan, Bangkok, 10330, Thailand.
| |
Collapse
|