1
|
Cheng L, Luo M, Guo Y, Fan Y, Wang P, Zhou G, Qin S, Weng B, Li P, Liu Z, Liu S. Correlations among the plasma concentrations of first-line anti-tuberculosis drugs and the physiological parameters influencing concentrations. Front Pharmacol 2023; 14:1248331. [PMID: 37869746 PMCID: PMC10587680 DOI: 10.3389/fphar.2023.1248331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Background: The plasma concentrations of the four most commonly used first-line anti-tuberculosis (TB) drugs, isoniazid (INH), rifampicin (RMP), ethambutol (EMB), and pyrazinamide (PZA), are often not within the therapeutic range. Insufficient drug exposure could lead to drug resistance and treatment failure, while excessive drug levels may lead to adverse reactions. The purpose of this study was to identify the physiological parameters influencing anti-TB drug concentrations. Methods: A retrospective cohort study was conducted. The 2-h plasma concentrations of the four drugs were measured by using the high-performance liquid chromatography-tandem mass spectrometry method. Results: A total of 317 patients were included in the study. The proportions of patients with INH, RMP, EMB, and PZA concentrations within the therapeutic range were 24.3%, 31.5%, 27.8%, and 18.6%, respectively. There were positive associations between the concentrations of INH and PZA and RMP and EMB, but negative associations were observed between the concentrations of INH and RMP, INH and EMB, RMP and PZA, and EMB and PZA. In the multivariate analysis, the influencing factors of the INH concentration were the PZA concentration, total bile acid (TBA), serum potassium, dose, direct bilirubin, prealbumin (PA), and albumin; those of the RMP concentration were PZA and EMB concentrations, weight, α-l-fucosidase (AFU), drinking, and dose; those of the EMB concentration were the RMP and PZA concentrations, creatinine, TBA and indirect bilirubin; and those of the PZA concentration were INH, RMP and EMB concentrations, sex, weight, uric acid and drinking. Conclusion: The complex correlations between the concentrations of the four first-line anti-TB drugs lead to a major challenge in dose adjustment to maintain all drugs within the therapeutic window. Levels of TBA, PA, AFU, and serum potassium should also be considered when adjusting the dose of the four drugs.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Pharmacy, the First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Ming Luo
- Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing, China
| | - Yan Guo
- Department of Infectious Diseases, the First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Yunfan Fan
- Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing, China
| | - Pengsen Wang
- Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing, China
| | - Gang Zhou
- Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing, China
| | - Shiwei Qin
- Department of Pharmacy, the First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Bangbi Weng
- Department of Pharmacy, the First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Peibo Li
- Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing, China
| | - Zhirui Liu
- Department of Pharmacy, the First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Songtao Liu
- Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing, China
| |
Collapse
|
2
|
Shultis MW, Mulholland CV, Berney M. Are all antibiotic persisters created equal? Front Cell Infect Microbiol 2022; 12:933458. [PMID: 36061872 PMCID: PMC9428696 DOI: 10.3389/fcimb.2022.933458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Antibiotic persisters are a sub-population of bacteria able to survive in the presence of bactericidal antibiotic despite the lack of heritable drug resistance mechanisms. This phenomenon exists across many bacterial species and is observed for many different antibiotics. Though these bacteria are often described as “multidrug persisters” very few experiments have been carried out to determine the homogeneity of a persister population to different drugs. Further, there is much debate in the field as to the origins of a persister cell. Is it formed spontaneously? Does it form in response to stress? These questions are particularly pressing in the field of Mycobacterium tuberculosis, where persisters may play a crucial role in the required length of treatment and the development of multidrug resistant organisms. Here we aim to interpret the known mechanisms of antibiotic persistence and how they may relate to improving treatments for M. tuberculosis, exposing the gaps in knowledge that prevent us from answering the question: Are all antibiotic persisters created equal?
Collapse
|
3
|
Xing Y, Yin L, Le X, Chen J, Zhang L, Li Y, Lu H, Zhang L. Simultaneous determination of first-line anti-tuberculosis drugs and one metabolite of isoniazid by liquid chromatography/tandem mass spectrometry in patients with human immunodeficiency virus-tuberculosis coinfection. Heliyon 2021; 7:e07532. [PMID: 34296020 PMCID: PMC8282971 DOI: 10.1016/j.heliyon.2021.e07532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/14/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022] Open
Abstract
The incidence rate of tuberculosis (TB) in patients with human immunodeficiency virus (HIV) infection is 26 times higher than that in other patients. Patients with both infections require long-term combination therapy, which increases therapy complexity and might lead to serious adverse reactions and drug-drug interactions. To optimize therapy for patients with HIV and TB coinfection, we developed an ultra-high-performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS) method to simultaneously quantify four anti-tuberculosis drugs and one isoniazid (INH) metabolite. Blood samples (n = 32) from 16 patients with HIV and TB coinfection were collected. Plasma protein precipitation with acetonitrile was followed by a hydrazine reaction between INH and cinnamaldehyde (CA) to produce phenylhydrazone (CA-INH) and dilution with heptafluorobutyric acid. The separation was performed on an Acquity UHPLC HSS T3 1.8 μm column (2.1 × 100 mm, Waters) with a mobile phase consisting of 10 mmol/L ammonium formate (pH = 4) in water (solvent A) and 0.1 % formic acid in methanol (solvent B) in a gradient elution. The compounds were detected using a positive multiple reaction monitoring model. INH, acetyl-INH (AC-INH), rifampicin (RIF), ethambutol (EMB), and pyrazinamide (PZA) showed good linear relationships in their quantitative ranges, with lower limits of quantification of 48, 192, 200, 96, and 480 ng/mL, respectively. The inter- and intraday precision was within 15 %, and the accuracy was between 85 % and 115 %. The mean plasma concentrations of INH, AC-INH, RIF, EMB, and PZA in patients were 1990.23 (24–16 600), 863.06 (96–2880), 3507.05 (229–9800), 808.10 (149–2130), and 18 838.33 (240–34 800) ng/mL, respectively. The plasma concentrations detected in the 16 patients were lower than the targeted concentrations in HIV-negative TB patients. In summary, we developed a simple UHPLC-MS/MS method for simultaneous quantification of first-line TB drugs, and successfully applied it for therapeutic drug monitoring in patients with HIV and TB coinfection. This method will facilitate monitoring of TB drugs in the future.
Collapse
Affiliation(s)
- Yaru Xing
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.,Guilin Medical University, Guilin 541004, China
| | - Lin Yin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xiaoqin Le
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jun Chen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lin Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yingying Li
- Guilin Medical University, Guilin 541004, China
| | - Hongzhou Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lijun Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
4
|
Lei Q, Zhao Y, Wang H, Zhou J, Lv X, Dang L, Zhu C. Simple and sensitive method for the analysis of 14 antituberculosis drugs using liquid chromatography/tandem mass spectrometry in human plasma. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8667. [PMID: 31800129 DOI: 10.1002/rcm.8667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
UNLABELLED Monitoring plasma concentration and adjusting doses of antituberculosis (TB) drugs are beneficial for improving responses to drug treatment and avoiding adverse drug reactions. A simple and sensitive liquid chromatography/tandem mass spectrometry method was developed to measure the plasma concentrations of 14 anti-TB drugs: ethambutol, isoniazid, pyrazinamide, levofloxacin, gatifloxacin, moxifloxacin, prothionamide, linezolid, rifampin, rifapentine, rifabutin, cycloserine, p-aminosalicylic acid, and clofazimine. METHODS Human plasma was precipitated by acetonitrile and was subsequently separated by an AQ-C18 column with a gradient elution. Drug concentrations were determined using multiple reaction monitoring in positive ion electrospray ionization mode. According to pharmacokinetic data of patients, the peak concentration ranges and the timing of blood collection were determined. RESULTS Intra- and interday precision was < 14.8%. Linearity, accuracy, extraction recovery, and matrix effect were acceptable for each drug. The stability of the method satisfied different storage conditions. CONCLUSIONS The method allowed the sensitive and reproducible determination of 14 frequently used anti-TB drugs which has already been of benefit for some TB patients.
Collapse
Affiliation(s)
- Qian Lei
- Department of Pharmacy, Office of Drug Clinical Trial Institution and Department of Medical, Xi'an Chest Hospital, Xi'an, Shaanxi, China
| | - Yuan Zhao
- Department of Pharmacy, Office of Drug Clinical Trial Institution and Department of Medical, Xi'an Chest Hospital, Xi'an, Shaanxi, China
| | - Hao Wang
- Department of Pharmacy, Office of Drug Clinical Trial Institution and Department of Medical, Xi'an Chest Hospital, Xi'an, Shaanxi, China
| | - Jun Zhou
- Department of Pharmacy, Office of Drug Clinical Trial Institution and Department of Medical, Xi'an Chest Hospital, Xi'an, Shaanxi, China
| | - Xiaohui Lv
- Department of Pharmacy, Office of Drug Clinical Trial Institution and Department of Medical, Xi'an Chest Hospital, Xi'an, Shaanxi, China
| | - Liyun Dang
- Department of Pharmacy, Office of Drug Clinical Trial Institution and Department of Medical, Xi'an Chest Hospital, Xi'an, Shaanxi, China
| | - Changsheng Zhu
- Department of Pharmacy, Office of Drug Clinical Trial Institution and Department of Medical, Xi'an Chest Hospital, Xi'an, Shaanxi, China
| |
Collapse
|