1
|
Huang J, Wen Y, Yang T, Song H, Meyboom R, Yang X, Teng L, Duez P, Zhang L. Safety and efficacy evaluation of Simo decoction and Arecae semen in herbal medicine practice. Heliyon 2024; 10:e31373. [PMID: 38841513 PMCID: PMC11152707 DOI: 10.1016/j.heliyon.2024.e31373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
Objective The traditional Chinese patent medicine (TCPM), Simo decoction (Simo decoction oral solution), with its primary ingredient Arecae semen (Binglang, Areca catechu L.), known for its potential carcinogenic effects, is the subject of this study. The research aims to analyze the effectiveness and potential risks of Simo decoction, particularly as a carcinogen, and to suggest a framework for evaluating the risks and benefits of other herbal medicines. Methods The study is based on post-marketing research of Simo decoction and Arecae semen. It utilized a wide range of sources, including ancient and modern literature, focusing on the efficacy and safety of Simo decoction. The research includes retrospective data on the sources, varieties, and toxicological studies of Arecae semen from databases such as Pubmed, Clinical Trials, Chinese Clinical Trial Registry, China National Knowledge Infrastructure, WHO-UMC Vigibase, and China National Center for ADR Monitoring. Results Common adverse drug reactions (ADRs) associated with Simo decoction include skin rash, nausea, vomiting, abdominal pain, and diarrhea. However, no studies exist reporting the severe ADRs, such as carcinogenic effects. Arecae semen is distributed across approximately 60 varieties in tropical Asia and Australia. According to the WHO-UMC Vigibase and the National Adverse Drug Reaction Monitoring System databases, there are currently no reports of toxicity related to Arecae semen in the International System for Classification of ADRs (ISCR) or clinical studies. Conclusion Risk-benefit analysis in TCPM presents more challenges compared to conventional drugs. The development of a practical pharmacovigilance system and risk-benefit analysis framework is crucial for marketing authorization holders, researchers, and regulatory bodies. This approach is vital for scientific supervision and ensuring the safety and efficacy of drug applications, thus protecting public health.
Collapse
Affiliation(s)
- Jukai Huang
- Department of Endocrinology, Beijing University of Chinese Medicine, Dongzhimen Hospital, PR China
| | - Yalu Wen
- Department of Respiratory Medicine, Beijing Hepingli Hospital, PR China
| | - Tianyi Yang
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30329, United States
| | - Haibo Song
- Center for Drug Reevaluation, National Medical Products Administration, Beijing, PR China
| | - Ronald Meyboom
- Department of Pharmacoepidemiology and Clinical Pharmacology, University of Utrecht, the Netherlands
| | - Xiaohui Yang
- Department of Endocrinology, Beijing University of Chinese Medicine, Dongzhimen Hospital, PR China
| | - Lida Teng
- Department of Health Economics and Outcomes Research, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, Université de Mons (UMONS), Mons, Belgium
| | - Li Zhang
- Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, No. 6, District 1, Fangxingyuan, Fangzhuang, Fengtai District, Beijing, PR China
| |
Collapse
|
2
|
Kong F, Wang C, Zhang J, Wang X, Sun B, Xiao X, Zhang H, Song Y, Jia Y. Chinese herbal medicines for prostate cancer therapy: From experimental research to clinical practice. CHINESE HERBAL MEDICINES 2023; 15:485-495. [PMID: 38094009 PMCID: PMC10715895 DOI: 10.1016/j.chmed.2023.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 05/20/2023] [Indexed: 06/26/2024] Open
Abstract
Prostate cancer remains the second most common malignancy in men worldwide, is a global health issue, and poses a huge health burden. Precision medicine provides more treatment options for prostate cancer patients, but its popularity, drug resistance, and adverse reactions still need to be focused on. Chinese herbal medicines (CHMs) have been widely accepted as an alternative therapy for cancer, with the advantages of multiple targets, multiple pathways, and low toxicity. We searched the experimental research and clinical practice of CHMs for prostate cancer treatment published in PubMed, Embase, and Web of Science in the last five years. We found five CHM formulas and six single CHM extracts as well as 12 CHM-derived compounds, which showed induction of apoptosis, autophagy, and cell cycle arrest, suppression of angiogenesis, proliferation, and migration of prostate cancer cells, reversal of drug resistance, and enhancement of anti-tumor immunity. The mechanisms of action include the PI3K/Akt/mTOR, AR, EGFR and Wnt/β-catenin signaling pathways, which are commonly implicated in the development of prostate cancer. We also summarized the advantages of CHMs in patients with hormone-sensitive and castration-resistant prostate cancer and provided ideas for their further experimental design and application.
Collapse
Affiliation(s)
- Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Chaoran Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jing Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xiaoqun Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Binxu Sun
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xian Xiao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haojian Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanqi Song
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| |
Collapse
|
3
|
Rosin Derivative IDOAMP Inhibits Prostate Cancer Growth via Activating RIPK1/RIPK3/MLKL Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9325973. [PMID: 35965682 PMCID: PMC9371855 DOI: 10.1155/2022/9325973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/25/2022] [Indexed: 12/05/2022]
Abstract
Rosin derivatives such as dehydroabietic acid and dehydroabietic amine belonging to diterpenoids have similar structure with androgen that inhibited the occurrence and development of prostate cancer. In this study, the effects and possible mechanism of the rosin derivative IDOAMP on prostate cancer were investigated. Our results showed that IDOAMP effectively inhibited cell viabilities of LNCaP, PC3, and DU145 prostate cells. After the treatment with IDOAMP, the levels of cleaved-PARP, LC3BII/I, and HMGB1 were increased, whereas the expression of GPX4 was decreased. Interestingly, cell viability was reversed by the supplements of necrostatin-1 and necrosulfonamide. Meanwhile, the IDOAMP downregulated the expression of human Aurora kinase A that was overexpressed in prostate cancer. In addition, co-IP results showed that IDOAMP inhibited the binding of Aurora kinase A to the receptor-interacting serine/threonine kinase 1 (RIPK1) and RIPK3. However, the binding of RIPK1 to FADD, RIPK3, or MLKL was significantly promoted. Further studies showed that the phosphorylation levels of RIPK1, RIPK, and MLKL were increased in a concentration-dependent manner. In in vivo model, IDOAMP reduced the tumor volumes and weights. In conclusion, IDOAMP directly inhibited Aurora kinase A and promoted the RIPK1/RIPK3/MLKL necrosome activation to inhibit the prostate cancer.
Collapse
|
4
|
Effects of Psychological Intervention on Perioperative Quality of Life and Serum PSA and FPSA Levels of Patients with Prostate Cancer Treated with Integrated Traditional Chinese and Western Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9286905. [PMID: 34868335 PMCID: PMC8641984 DOI: 10.1155/2021/9286905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022]
Abstract
Objective To observe the effects of psychological intervention on the perioperative quality of life and serum prostate-specific antigen (PSA) and free PSA (FPSA) levels in patients with prostate cancer treated with integrated traditional Chinese and Western medicine. Method A total of 208 prostate cancer patients were selected and randomly divided into a study group with 104 cases and a control group with 104 cases. The control group received a plan of basic nursing combined with integrated traditional Chinese and Western medicine, and the study group received psychological intervention on the basis of the control group. Negative emotion, pain degree, quality of life, maximum urine flow rate, residual urine volume, International Prostate Symptom Score (IPSS), and incidence of adverse reactions were compared between the two groups before and after the treatment. The levels of PSA and FPSA and the long-term efficacy of the two groups of patients before and after treatment were compared. Results After nursing, Hamilton Anxiety Scale (HAMA) score, Hamilton Depression Scale (HAMD) score, pain degree, maximum urine flow rate, residual urine volume, IPSS score, emotional function, social function, role function, and physical function scores of patients in two groups were decreased, and the decrease was more significant in the study group. After treatment, serum PSA and FPSA levels in the study group were obviously lower than those in the control group. The two-year cumulative survival rate of the study group was higher than that of the control group. There was no significant difference in the cognitive function score and incidence of adverse reactions between the two groups. Conclusion Psychological intervention combined with traditional Chinese and Western medicine in the treatment of prostate cancer can effectively improve the patient's psychological state, reduce the degree of pain in patients, improve the therapeutic effect and the quality of life of patients, and significantly reduce serum PSA and FPSA levels, which could lead to a prolonged life.
Collapse
|
5
|
Regulatory Mechanisms of Coicis Semen on Bionetwork of Liver Cancer Based on Network Pharmacology. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5860704. [PMID: 33294448 PMCID: PMC7700039 DOI: 10.1155/2020/5860704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/08/2020] [Accepted: 10/31/2020] [Indexed: 01/10/2023]
Abstract
At present, there is an increasing incidence and mortality of liver cancer. Despite surgery and chemoradiotherapy, there is a lack of effective oral medications with low side effects. In East Asia, Coicis Semen (CS) is used as both food and natural medicine and has a significant impact on the treatment of liver cancer. However, due to its multicomponent and multitarget characteristics, the mechanisms of CS against liver cancer remain unclear. This study collected CS compounds and target proteins in SymMap, then cross-matched with the liver cancer targets in the CTD database to construct an interaction network of CS-liver cancer proteins, and visualized by Cytoscape software. DAVID database was used to perform pathway enrichment analysis to find target proteins in core pathways and the related small molecules in CS. The results showed that a total of 103 common genes shared by CS and liver cancer were obtained, which were enriched for precancerous lesion pathways such as hepatitis B and fatty liver and biological signaling pathways such as HIF-1 and TNF. The combination of sitosterol and CASP3 in CS, acting on “pathways in cancer” and restoring normal cell apoptosis, could be the core mechanisms of CS in the treatment of liver cancer. Based on the system biology analysis, it is speculated that CS may not only participate in multiple mechanisms of action to treat liver cancer synergistically but may also be involved in factors that reduce the incidence of liver cancer.
Collapse
|