1
|
Narayanaswamy R, Harika V, Prabhakaran VS. Human and Mouse Nephrin and Their Interactions With 13 Proteins: An In Silico Study. Cureus 2024; 16:e66332. [PMID: 39246878 PMCID: PMC11379415 DOI: 10.7759/cureus.66332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Background Human nephrin (hNeph) (podocyte protein) has been known to be involved in both the formation and maintenance of the slit diaphragm (SD) and also acts as a hub protein in the podocyte by modulating cell polarity, cell survival, cell adhesion, cytoskeletal organization, mechano-sensing, and SD turn-over. Methodology In the present investigation, we aimed to analyse the hNeph and mouse nephrin (mNeph) and their interactions with 13 proteins using the molecular docking method. The 13 selected human proteins which include matrix metalloproteinases (MMP 2 and 9), retinol-binding proteins (RBP 3 and 4), kallikrein 1 (KLK 1), uromodulin, insulin-like growth factor binding protein 7 (IGFBP7), cystatin C, podocin, beta arrestin 1, vang-like protein 2 (VANGL2), dynamin 1, and tensin-like C1 domain-containing phosphatase (TENC1) were studied on the docking analysis of hNeph and mNeph by using the HDOCK (protein-protein) docking method. In addition, the physicochemical (PC) properties of 15 proteins were performed using the ProtParam web server. Results In the present investigation, five chosen human proteins, namely, IGFBP7, cystatin C, podocin, VANGL2, and TENC1, have exhibited theoretical isoelectric point (PI) values greater than 7.0. The protein-protein docking analysis has shown that hKLK and hVANGL2 exhibited the maximum docking score of -206.39 kcal/mol and -329.28 (kcal/mol) with the target proteins mNeph and hNeph, respectively. Conclusions Thus, the current finding highlights the interactions of hNeph and mNeph with 13 chosen proteins, which may help in renal disease management.
Collapse
Affiliation(s)
- Radhakrishnan Narayanaswamy
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (Deemed to be University), Chennai, IND
| | - Vemugadda Harika
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (Deemed to be University), Chennai, IND
| | - Vasantha-Srinivasan Prabhakaran
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (Deemed to be University), Chennai, IND
| |
Collapse
|
2
|
Guo W, Yu Z, Li T, Lu L, Lin H, Liao Y, Zheng Y, Liu Y, Alevtinovna GM, Barysavets DS, Chen J, Zan J, Lu J. Development of a time-resolved immunochromatographic test strip for rapid and quantitative determination of retinol-binding protein 4 in urine. Mikrochim Acta 2024; 191:311. [PMID: 38717575 DOI: 10.1007/s00604-024-06381-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024]
Abstract
Urine retinol-binding protein 4 (RBP4) has recently been reported as a novel earlier biomarker of chronic kidney disease (CKD) which is a global public health problem with high morbidity and mortality. Accurate and rapid detection of urine RBP4 is essential for early monitor of impaired kidney function and prevention of CKD progression. In the present study, we developed a time-resolved fluorescence immunochromatographic test strip (TRFIS) for the quantitative and rapid detection of urine RBP4. This TRFIS possessed excellent linearity ranging from 0.024 to 12.50 ng/mL for the detection of urine RBP4, and displayed a good linearity (Y = 239,581 × X + 617,238, R2 = 0.9902), with the lowest visual detection limit of 0.049 ng/mL. This TRFIS allows for quantitative detection of urine RBP4 within 15 min and shows high specificity. The intra-batch coefficient of variation (CV) and the inter-batch CV were both < 8%, respectively. Additionally, this TRFIS was applied to detect RBP4 in the urine samples from healthy donors and patients with CKD, and the results of TRFIS could efficiently discern the patients with CKD from the healthy donors. The developed TRFIS has the characteristics of high sensitivity, high accuracy, and a wide linear range, and is suitable for rapid and quantitative determination of urine RBP4.
Collapse
Affiliation(s)
- Wenjie Guo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhiyong Yu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Tianxu Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Lingfei Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518033, Guangdong, China
| | - Huiqi Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ying Liao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yanghao Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yuntao Liu
- The Second Affiliated Hospital of Guangzhou, Guangdong Provincial Key Laboratory of Research on Emergency in TCM, University of Chinese Medicine, Guangzhou, Guangdong, China
| | | | - Dzmitry S Barysavets
- Institute of Experimental Veterinary Medicine named of S.N. Vyshelessky, Minsk, Belarus
| | - Jinping Chen
- Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China.
- The Second Affiliated Hospital of Guangzhou, Guangdong Provincial Key Laboratory of Research on Emergency in TCM, University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518033, Guangdong, China.
| |
Collapse
|
3
|
Luo Z, Chen Z, Hu J, Ding G. Interplay of lipid metabolism and inflammation in podocyte injury. Metabolism 2024; 150:155718. [PMID: 37925142 DOI: 10.1016/j.metabol.2023.155718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/12/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
Podocytes are critical for maintaining permselectivity of the glomerular filtration barrier, and podocyte injury is a major cause of proteinuria in various primary and secondary glomerulopathies. Lipid dysmetabolism and inflammatory activation are the distinctive hallmarks of podocyte injury. Lipid accumulation and lipotoxicity trigger cytoskeletal rearrangement, insulin resistance, mitochondrial oxidative stress, and inflammation. Subsequently, inflammation promotes the progression of glomerulosclerosis and renal fibrosis via multiple pathways. These data suggest that lipid dysmetabolism positively or negatively regulates inflammation during podocyte injury. In this review, we summarize recent advances in the understanding of lipid metabolism and inflammation, and highlight the potential association between lipid metabolism and podocyte inflammation.
Collapse
Affiliation(s)
- Zilv Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China.
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
4
|
Urinary Markers of Tubular Injury and Renal Fibrosis in Patients with Type 2 Diabetes and Different Phenotypes of Chronic Kidney Disease. Life (Basel) 2023; 13:life13020343. [PMID: 36836700 PMCID: PMC9961033 DOI: 10.3390/life13020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023] Open
Abstract
This study assessed the urinary excretion of markers and mediators of tubular injury and renal fibrosis in patients with type 2 diabetes (T2D) and non-albuminuric and albuminuric patterns of chronic kidney disease (CKD). One hundred and forty patients with long-term T2D and different patterns of CKD and twenty non-diabetic individuals were included. Urinary retinol-binding protein 4 (RBP-4), glutathione-S-transferase α1 and π (GST-α1 and GST-π), transforming growth factor β (TGF-β), type I and type IV collagen (Col1 and Col4), bone morphogenic protein 7 (BMP-7), and hepatocyte growth factor (HGF) were assessed by ELISA. Patients with T2D demonstrated increased urinary excretion of RBP-4, GST-π, Col4, BMP-7, and HGF (all p < 0.05 vs. control). The excretion of RBP-4, GST-π, Col1, and Col4 was increased in patients with elevated albumin-to-creatinine ratio (UACR; all p < 0.05 vs. control), while BMP-7 and HGF were increased innormoalbuminuric patients also (p < 0.05). Urinary RBP-4, GST-α1, Col1, Col4, and HGF correlated positively with UACR; meanwhile, no correlations with glomerular filtration rate were found. The results demonstrate that elevated urinary excretions of the markers of tubular injury (RBP-4, GST-π) and renal fibrosis (Col1, Col4), as well as HGF, an antifibrotic regulator, are associated with the albuminuric pattern of CKD in subjects with T2D.
Collapse
|
5
|
Navadurong H, Prasoppokakorn T, Srisawat N, Chaiteerakij R, Komolmit P, Tangkijvanich P, Treeprasertsuk S. Urinary neutrophil gelatinase‐associated lipocalin: A novel biomarker for predicting chronic kidney disease in patients with nonalcoholic fatty liver disease. PORTAL HYPERTENSION & CIRRHOSIS 2022; 1:157-166. [DOI: 10.1002/poh2.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/30/2022] [Indexed: 01/03/2025]
Abstract
AbstractAimsNonalcoholic fatty liver disease (NAFLD) and chronic kidney disease (CKD) are common diseases worldwide. Reports of a high prevalence of CKD in NAFLD patients have been documented. Urinary neutrophil gelatinase‐associated lipocalin (NGAL) is a reliable biomarker for renal dysfunction, and it is recommended for early detection of acute kidney injury (AKI) in cirrhotic patients. Currently, there is no evidence for using urine NGAL to predict CKD in NAFLD patients. We aim to determine the proportion of CKD and identify the predictive value of NGAL and other factors associated with CKD in these patients.MethodsA single‐center, cross‐sectional study was conducted between July 2018 and December 2019 in consecutive NAFLD patients diagnosed by transient elastography (TE) or liver biopsy at a tertiary care university hospital in Bangkok, Thailand. Advanced liver fibrosis is defined as fibrosis stages 3–4. The definition of CKD is estimated glomerular filtration rate (eGFR) <60 ml⋅min−1⋅1.73 m−2 based on the Kidney Disease Improving Global Outcomes (KDIGO) guideline 2012. Urine NGAL level was measured by enzyme linked immunosorbent assay technique.ResultsA total of 101 NAFLD patients were included with a mean age of 54 ± 16 years. Among these patients, 14 (13.9%), 13 (12.9%), and 32 (31.7%) had fibrosis stages 2, 3, and 4, respectively. Nine percent (9 of 101) of patients with NAFLD with a mean eGFR of 42.66 ± 17.42 ml⋅min−1⋅1.73 m−2. The statistically significant factors associated with CKD were a higher level of urine NGAL (55.1 [25.15–150.60] vs. 15.1 [9.67–25.15] ng/ml; p = 0.006), a higher level of TE (17.3 [6.85–46.20] vs. 7.7 [5.6–11.7] kPa; p = 0.038), and a presence of advanced fibrosis (77.8% vs. 40.7%; p = 0.041), compared to those without CKD. Urine NGAL was the only significant factor associated with CKD in NAFLD patients. The cutoff level of urine NGAL at 36.75 ng/ml showed odds ratio of 21.27 (95% CI: 3.97–113.82; p < 0.001) and 1.02 (95% CI: 1.00–1.04; p = 0.024) by univariate and multivariate analyses, respectively. The selected urine NGAL cutoff demonstrated a sensitivity and specificity of 77.8% and 85.9% for predicting CKD, respectively.ConclusionsThe proportion of CKD in NAFLD patients was 9% and the presence of advanced fibrosis was a significant risk factor associated with CKD. Additionally, urine NGAL was significantly associated with CKD in NAFLD patients using a cutoff level of 36.75 ng/ml for predicting CKD with acceptable sensitivity and specificity. A larger prospective cohort study is needed to validate our findings.
Collapse
Affiliation(s)
- Huttakan Navadurong
- Department of Medicine Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society Bangkok Thailand
| | - Thaninee Prasoppokakorn
- Department of Medicine Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society Bangkok Thailand
| | - Nattachai Srisawat
- Department of Medicine Division of Nephrology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society Bangkok Thailand
- Excellent Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society Bangkok Thailand
| | - Roongruedee Chaiteerakij
- Department of Medicine Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society Bangkok Thailand
| | - Piyawat Komolmit
- Department of Medicine Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society Bangkok Thailand
- Liver Fibrosis and Cirrhosis Research Unit Chulalongkorn University Bangkok Thailand
| | - Pisit Tangkijvanich
- Department of Biochemistry and Liver Research Unit, Faculty of Medicine Chulalongkorn University Bangkok Thailand
| | - Sombat Treeprasertsuk
- Department of Medicine Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society Bangkok Thailand
| |
Collapse
|
6
|
Flores-Cortez YA, Barragán-Bonilla MI, Mendoza-Bello JM, GonzÁlez-Calixto C, Flores-Alfaro E, Espinoza-Rojo M. Interplay of retinol binding protein 4 with obesity and associated chronic alterations (Review). Mol Med Rep 2022; 26:244. [PMID: 35656886 PMCID: PMC9185696 DOI: 10.3892/mmr.2022.12760] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Obesity is a multifactorial disease, defined as excessive fat deposition in adipose tissue. Adipose tissue is responsible for the production and secretion of numerous adipokines that induce metabolic disorders. Retinol‑binding protein 4 (RBP4) is an adipokine that transports vitamin A or retinol in the blood. High levels of RBP4 are associated with development of metabolic disease, including obesity, insulin resistance (IR), metabolic syndrome, and type 2 diabetes (T2D). The present review summarizes the role of RBP4 in obesity and associated chronic alterations. Excessive synthesis of RBP4 contributes to inflammatory characteristic of obesity by activation of immune cells and release of proinflammatory cytokines, such as TNFα and ILs, via the Toll‑like receptor/JNK pathway. The retinol‑RBP4 complex inhibits insulin signaling directly in adipocytes by activating Janus kinase 2 (JAK2)/STAT5/suppressor of cytokine signaling 3 signaling. This mechanism is retinol‑dependent and requires vitamin A receptor stimulation by retinoic acid 6 (STRA6). In muscle, RBP4 is associated with increased serine 307 phosphorylation of insulin receptor substrate‑1, which decreases its affinity to PI3K and promotes IR. In the liver, RBP4 increases hepatic expression of phosphoenolpyruvate carboxykinase, which increases production of glucose. Elevated serum RBP4 levels are associated with β‑cell dysfunction in T2D via the STRA6/JAK2/STAT1/insulin gene enhancer protein 1 pathway. By contrast, RBP4 induces endothelial inflammation via the NF‑κB/nicotinamide adenine dinucleotide phosphate oxidase pathway independently of retinol and STRA6, which stimulates expression of proinflammatory molecules, such as vascular cell adhesion molecule 1, E‑selectin, intercellular adhesion molecule 1, monocyte chemoattractant protein 1 and TNFα. RBP4 promotes oxidative stress by decreasing endothelial mitochondrial function; overall, it may serve as a useful biomarker in the diagnosis of obesity and prognosis of associated disease, as well as a potential therapeutic target for treatment of these diseases.
Collapse
Affiliation(s)
- Yaccil Adilene Flores-Cortez
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| | - Martha I. Barragán-Bonilla
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| | - Juan M. Mendoza-Bello
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| | | | - Eugenia Flores-Alfaro
- Laboratory of Clinical and Molecular Epidemiology, Faculty of Biological and Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| | - Mónica Espinoza-Rojo
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| |
Collapse
|
7
|
Tao Z, Li Y, Cheng B, Zhou T, Gao Y. Influence of Nonalcoholic Fatty Liver Disease on the Occurrence and Severity of Chronic Kidney Disease. J Clin Transl Hepatol 2022; 10:164-173. [PMID: 35233386 PMCID: PMC8845149 DOI: 10.14218/jcth.2021.00171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/10/2021] [Accepted: 08/25/2021] [Indexed: 12/04/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is reported to affect 20-30% of adults and is accompanied by various metabolic comorbidities, where the economic and clinical burden of NAFLD is attributed to the progression of liver disease as well as the presence of extrahepatic diseases. Chronic kidney disease (CKD), which has a high incidence rate, high morbidity and mortality rates, and high medical costs, has been linked to NAFLD. CKD is associated with some metabolism-related risk factors that overlap with metabolic comorbidities of NAFLD. Therefore, to investigate the potential factors that influence CKD occurrence, the association between NAFLD and CKD should be clarified. Some studies have confirmed that NAFLD influences the occurrence and severity of CKD, whereas some studies have indicated that there is no correlation. In this review, the results of a few studies have been discussed, the potential risk factors for CKD in NAFLD are explored, and the respective biological mechanisms are elaborated to help clinicians identify CKD in patients much earlier than it is diagnosed now and thus help in reducing the incidence of liver and kidney transplants.
Collapse
Affiliation(s)
| | | | | | | | - Yanjing Gao
- Correspondence to: Yanjing Gao, Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong 250012, China. ORCID: https://orcid.org/0000-0001-8153-3754. Tel: +86-18560086087, E-mail:
| |
Collapse
|
8
|
Jeon HJ, Shin DH, Oh J, Kee YK, Park JY, Ko K, Lee S. Urinary Retinol-Binding Protein 4 is Associated With Renal Function and Rapid Renal Function Decline in Kidney Transplant Recipients. Transplant Proc 2022; 54:362-366. [DOI: 10.1016/j.transproceed.2021.10.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
|
9
|
Pre-emptive pharmacological inhibition of fatty acid-binding protein 4 attenuates kidney fibrosis by reprogramming tubular lipid metabolism. Cell Death Dis 2021; 12:572. [PMID: 34083513 PMCID: PMC8175732 DOI: 10.1038/s41419-021-03850-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/25/2022]
Abstract
Kidney fibrosis is a hallmark of chronic kidney disease (CKD) progression that is caused by tubular injury and dysregulated lipid metabolism. Genetic abolition fatty acid-binding protein 4 (FABP4), a key lipid transporter, has been reported to suppress kidney interstitial fibrosis. However, the role and underlying mechanism of chemical inhibition of FABP4 in fibrotic kidney have not been well-documented. Here, we examined preemptive the effect of a FABP4 inhibitor, BMS309403, on lipid metabolism of tubular epithelial cells (TECs) and progression of kidney fibrosis. The expression of FABP4 was significantly elevated, concomitated with the accumulation of lipid droplets in TECs during kidney fibrosis. Treatment with BMS309403 alleviated lipid deposition of TECs, as well as interstitial fibrotic responses both in unilateral ureteral obstruction (UUO)-engaged mice and TGF-β-induced TECs. Moreover, BMS309403 administration enhanced fatty acid oxidation (FAO) in TECs by regulating peroxisome proliferator-activated receptor γ (PPARγ) and restoring FAO-related enzyme activities; In addition, BMS309403 markedly reduced cell lipotoxicity, such as endoplasmic reticulum (ER) stress and apoptosis in fibrotic kidney. Taken together, our results suggest that preemptive pharmacological inhibition of FABP4 by BMS309403 rebalances abnormal lipid metabolism in TECs and attenuates the progression of kidney fibrosis, thus may hold therapeutic potential for the treatment of fibrotic kidney diseases.
Collapse
|