1
|
Song L, Wang X, Wang G, Zheng L, Zhou Z. Identification and Characterization of Differentially Expressed MicroRNAs in Benign Prostatic Hyperplasia. Cancer Rep (Hoboken) 2025; 8:e70178. [PMID: 40223182 PMCID: PMC11994474 DOI: 10.1002/cnr2.70178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025] Open
Abstract
OBJECTIVES The primary aim of this research is to identify and describe the distinct patterns of microRNAs (miRNAs) that are unusually expressed in benign prostatic hyperplasia (BPH) tissues compared to normal prostatic tissues. MATERIALS AND METHODS The investigation began with the collection of three samples each from normal prostatic and BPH tissues. These samples underwent miRNA microarray analysis using the Agilent platform. Following the preliminary screening, a larger sample set, comprising five normal prostatic tissues and 36 BPH tissues, was subjected to qRT-PCR to confirm the differential expression of the miRNAs initially identified. RESULTS The microarray analysis revealed that only miR-126-3p and miR-4672 exhibited an expression profile marked by both a fold change > 1.5 and p < 0.05, indicating significant downregulation in BPH tissues. MiR-145-3p and miR-143-3p also showed downregulation with fold changes greater than 1.5; however, these changes did not reach statistical significance as their p-values were above 0.05. Further attempts to validate these findings through qRT-PCR did not confirm any notable dysregulation among the four miRNAs studied; the variations in their expression levels between normal and BPH tissues did not achieve statistical significance, with p-values exceeding 0.1. From the data accrued, it can be inferred that the roles of miR-4672, miR-126-3p, miR-145-3p, and miR-143-3p in BPH development continue to be an unresolved mystery, and the need for further investigation. CONCLUSIONS This preliminary investigation establishes a foundation for subsequent studies aimed at elucidating the regulatory mechanisms underlying BPH. However, these results highlight the need for further investigation employing a more extensive sample size and comprehensive clinical data to elucidate their potential roles in the pathogenesis of BPH.
Collapse
Affiliation(s)
- Lingmin Song
- Department of Urologic SurgeryNingbo Yinzhou No. 2 HospitalNingboChina
| | - Xue Wang
- Department of Urologic SurgeryNingbo Yinzhou No. 2 HospitalNingboChina
| | - Gang Wang
- Department of Urologic SurgeryNingbo Yinzhou No. 2 HospitalNingboChina
| | - Liwei Zheng
- Department of Urologic SurgeryNingbo Yinzhou No. 2 HospitalNingboChina
| | - Zhansong Zhou
- Urological Research Institute of People's Liberation Army, Southwest Hospital, Army Medical UniversityChongqingChina
| |
Collapse
|
2
|
Syriopoulou S, Kontandreopoulou CN, Diamantopoulos PT, Vlachopoulou D, Stafylidis C, Katsiampoura P, Chatzidavid S, Giannakopoulou N, Pappa V, Kotsianidis I, Hatzimichael E, Dimou M, Symeonidis A, Panayiotidis P, Viniou NA. MicroRΝΑ analysis in patients with myelodysplastic neoplasms. Possible implications in risk stratification. Leuk Lymphoma 2025; 66:313-319. [PMID: 39378224 DOI: 10.1080/10428194.2024.2412291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024]
Abstract
MiRNAs have been identified as participants in leukemogenesis by controlling several cellular functions, such as differentiation, proliferation, and apoptosis. Their role in myelodysplastic neoplasms (MDS) pathogenesis is researched due to implementations in early identification, classification, and therapeutical options. IPSS-R, being the most widely used MDS classification, underestimates early biological events that can alter the disease's prognosis. The purpose of this study is to determine whether miRNA levels are aligned to MDS risk stratification groups and can therefore be used as diagnostic biomarkers. To evaluate miRNAs as possible biomarkers, we measured the levels of miR-181a-2-3p, miR-124-3p, miR-550a-3p, miR-155-5p, miR-151a-3p, and miR-125b-5p by a quantitative real-time PCR in bone marrow samples of 41 MDS patients. In conclusion, in myeloid malignancies, genomic characteristics may provide a wider apprehension of its clinical course and prognosis. MiRNAs constitute a possible diagnostic biomarker and therapeutic target, allowing intermediate-risk patients that express high levels of specific miRNAs to be re-classified and receive more advanced therapeutic agents. In our study, an association between high levels of miRNAs and worsening outcomes is established, supporting the need for further incorporation of molecular data into currently used classification systems.
Collapse
Affiliation(s)
- Stavroula Syriopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina-Nefeli Kontandreopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis T Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra Vlachopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Stafylidis
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiota Katsiampoura
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sevastianos Chatzidavid
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nefeli Giannakopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassiliki Pappa
- Second Department of Internal Medicine and Research Institute, Attikon University General Hospital, Athens, Greece
| | - Ioannis Kotsianidis
- Department of Hematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | | | - Maria Dimou
- 1st Propedeutic Internal Medicine Department, Hematology Unit, National and Kapodistrian University, Athens, Greece
| | - Argiris Symeonidis
- Hematology Division, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | - Panayiotis Panayiotidis
- Department of Hematology and Bone Marrow Transplantation, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nora-Athina Viniou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Penglong T, Pholngam N, Tehyoh N, Tansila N, Buncherd H, Thanapongpichat S, Srinoun K. Expression of microRNA-155 in thalassemic erythropoiesis. PeerJ 2024; 12:e18054. [PMID: 39314840 PMCID: PMC11418816 DOI: 10.7717/peerj.18054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
Background Ineffective erythropoiesis (IE) is the primary cause of anemia and associated pathologies in β-thalassemia. The characterization of IE is imbalance of erythroid proliferation and differentiation, resulting in increased erythroblast proliferation that fails to differentiate and gives rise to enucleate RBCs. MicroRNAs (miRs) are known to play important roles in hematopoiesis. miR-155 is a multifunctional molecule involved in both normal and pathological hematopoiesis, and its upregulation is observed in patients with β-thalassemia/HbE. However, the expression and function of miR-155, especially in β-thalassemia, have not yet been explored. Methods To study miR-155 expression in thalassemia, erythroblast subpopulations, CD45-CD71+Ter-119+ and CD45-CD71-Ter-119+ were collected from β IVSII-654 thalassemic bone marrow. Additionally, a two-phase culture of mouse bone marrow erythroid progenitor cells was performed. Expression of miR-155 and predicted mRNA target genes, c-myc, bach-1 and pu-1, were determined by quantitative reverse transcription (qRT)-polymerase chain reaction (PCR) and normalized to small nucleolar RNA (snoRNA) 202 and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), respectively. To investigate the effect of miR-155 expression, erythroblasts were transfected with miR-inhibitor and -mimic in order to elevate and eliminate miR-155 expression, respectively. Erythroid cell differentiation was evaluated by Wright-Giemsa staining and flow cytometry. Results miR-155 was upregulated, both in vivo and in vitro, during erythropoiesis in β-thalassemic mice. Our study revealed that gain- and loss of function of miR-155 were involved in erythroid proliferation and differentiation, and augmented proliferation and differentiation of thalassemic mouse erythroblasts may be associated with miR-155 upregulation. miR-155 upregulation in β-thalassemic mice significantly increased the percentage of basophilic and polychromatic erythroblasts. Conversely, a significant decrease in percentage of basophilic and polychromatic erythroblasts was observed in β-thalassemic mice transfected with anti-miR-155 inhibitor. We also examined the mRNA targets (c-myc, bach-1 and pu-1) of miR-155, which indicated that c-myc is a valid target gene of miR-155 that regulates erythroid differentiation. Conclusion miR-155 regulates IE in β-thalassemia via c-myc expression controlling erythroblast proliferation and differentiation.
Collapse
Affiliation(s)
- Tipparat Penglong
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Nuttanan Pholngam
- Molecular Medicine Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Nasra Tehyoh
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Natta Tansila
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Hansuk Buncherd
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | - Kanitta Srinoun
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
4
|
Hedayati N, Safaei Naeini M, Ale Sahebfosoul MM, Mafi A, Eshaghi Milasi Y, Rizaneh A, Nabavi N, Farahani N, Alimohammadi M, Ghezelbash B. MicroRNA dysregulation and its impact on apoptosis-related signaling pathways in myelodysplastic syndrome. Pathol Res Pract 2024; 261:155478. [PMID: 39079383 DOI: 10.1016/j.prp.2024.155478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/18/2024]
Abstract
Myelodysplastic syndrome (MDS) holds a unique position among blood cancers, encompassing a spectrum of blood-related disorders marked by impaired maturation of blood cell precursors, bone marrow abnormalities, genetic instability, and a higher likelihood of progressing to acute myeloid leukemia. MicroRNAs (miRNAs), short non-coding RNA molecules typically 18-24 nucleotides in length, are known to regulate gene expression and contribute to various biological processes, including cellular differentiation and programmed cell death. Additionally, miRNAs are involved in many aspects of cancer development, influencing cell growth, transformation, and apoptosis. In this study, we explore the impact of microRNAs on cellular apoptosis in MDS.
Collapse
Affiliation(s)
- Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mobina Safaei Naeini
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anahita Rizaneh
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, Canada.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Behrooz Ghezelbash
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Cao M, Peng B, Xu W, Chen P, Li H, Cheng Y, Chen H, Ye L, Xie J, Wang H, Ren L, Xiong L, Zhu J, Xu X, Geng L, Gong S. The Mechanism of miR-155/miR-15b Axis Contributed to Apoptosis of CD34+ Cells by Upregulation of PD-L1 in Myelodysplastic Syndromes. Mediterr J Hematol Infect Dis 2023; 15:e2023040. [PMID: 37435035 PMCID: PMC10332351 DOI: 10.4084/mjhid.2023.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/17/2023] [Indexed: 07/13/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are a group of heterogeneous myeloid clonal diseases that are characterized by ineffective bone marrow hematopoiesis. Since studies have confirmed the significance of miRNAs in ineffective hematopoiesis in MDS, the current report elucidated the mechanism mediated by miR-155-5p. The bone marrow of MDS patients was collected to detect miR-155-5p and to analyze the correlation between miR-155-5p and clinicopathological variables. Isolated bone marrow CD34+ cells were transfected with lentiviral plasmids that interfere with miR-155-5p, followed by apoptosis analysis. Finally, miR-155-5p-targeted regulation of RAC1 expression was identified, as well as the interaction between RAC1 and CREB, the co-localization of RAC1 and CREB, and the binding of CREB to miR-15b. As measured, miR-155-5p was upregulated in the bone marrow of MDS patients. Further cell experiments validated that miR-155-5p promoted CD34+ cell apoptosis. miR-155-5p could reduce the transcriptional activity of miR-15b by inhibiting RAC1, dissociating the interaction between RAC1 and CREB, and inhibiting the activation of CREB. Upregulating RAC1, CREB, or miR-15b could reduce miR-155-5p-mediated apoptosis promotion on CD34+ cells. Additionally, miR-155-5p could force PD-L1 expression, and this effect was impaired by elevating RAC1, CREB, or miR-15b. In conclusion, miR-155-5p mediates PD-L1-mediated apoptosis of CD34+ cells in MDS by RAC1/CREB/miR-15b axis, thereby inhibiting bone marrow hematopoiesis.
Collapse
Affiliation(s)
- MeiWan Cao
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - BaoLing Peng
- Center for child health and mental health, Shenzhen Children’s Hospital, Shenzhen City, Guangdong Province, China
| | - WanFu Xu
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - PeiYu Chen
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - HuiWen Li
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - Yang Cheng
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - Huan Chen
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - LiPing Ye
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - Jing Xie
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - HongLi Wang
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - Lu Ren
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - LiYa Xiong
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - JingNan Zhu
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - XiangYe Xu
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - LanLan Geng
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - SiTang Gong
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| |
Collapse
|
6
|
Liang X, Shi Z, Huang X, Wan C, Zhu S, Wu M, Li Z, Tang Z, Li J, Zhao W, Luo J, Liu Z. MiR-181a-2-3p as a potential diagnostic and prognostic marker for myelodysplastic syndrome. Hematology 2022; 27:1246-1252. [DOI: 10.1080/16078454.2022.2149971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Xiaolin Liang
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Hematology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Zeyan Shi
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Hematology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xiaoke Huang
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Chengyao Wan
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Shanhu Zhu
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Meiqing Wu
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Zhongqing Li
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Zhongyuan Tang
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Jing Li
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Hematology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Weihua Zhao
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Hematology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Jun Luo
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Hematology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Zhenfang Liu
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Hematology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
7
|
An L, Wang Y. Potential Roles of miRNA-1245a Regulatory Networks in Sarcopenia. Int J Gen Med 2021; 14:6807-6813. [PMID: 34703286 PMCID: PMC8523505 DOI: 10.2147/ijgm.s334501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/14/2021] [Indexed: 12/25/2022] Open
Abstract
Objective Sarcopenia is a universal problem in elderly individuals. The molecular regulatory mechanisms in sarcopenia are not well understood. In the present study, we explored a possible molecular mechanism involved in the pathogenesis of sarcopenia. Methods Differentially expressed genes (DEGs) were identified using the Gene Expression Omnibus (GEO) database. Signaling pathways related to these DEGs were identified by gene set enrichment analysis (GSEA). Pearson correlation was calculated for all the pairwise comparisons of gene expression values between coding genes and DEGs. Interactions between the proteins encoded by the DEGs were identified using the STRING database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analyses were performed to predict the functions of the DEGs. Results Three differentially expressed miRNAs and 5 differentially expressed mRNAs were identified in association with DEGs. We found that miRNA-1245a expression in patients with sarcopenia was higher than that in healthy controls. The GSEA showed that many pathways, such as the JAK-STAT signaling pathway and pathways related to glioma, gap junctions, and regulation of the actin cytoskeleton, were enriched in the high-miRNA-1245a-expression group. A total of 127 miRNA-1245a-related mRNAs were identified. The GO and KEGG analyses revealed that miRNA-1245a had a strong effect on a number of fundamental biological processes, such as kinase activity, that are related to the development of sarcopenia. Conclusion Our analyses indicate that miRNA-1245a may be a potential key molecule in the diagnosis and treatment of sarcopenia, which provides a basis for the research of miRNA in sarcopenia.
Collapse
Affiliation(s)
- Li An
- Department of Geriatrics, Zhongda Hospital Southeast University,, Nanjing City, People's Republic of China
| | - Yao Wang
- Department of Endocrine, Zhongda Hospital Southeast University, Nanjing City, People's Republic of China
| |
Collapse
|
8
|
Zhao Y, Yuan X, Zhong Y, Zhang Y, Zhang S, Li S, Zhao Y, Zheng W, Liu J, Xia Y, Yang Y, Liu Y, Chen F. Single-Nucleotide Polymorphisms in the 3' Untranslated Region of CORIN Associated With Cardiovascular Diseases in a Chinese Han Population: A Case-Control Study. Front Cardiovasc Med 2021; 8:625072. [PMID: 34409072 PMCID: PMC8365884 DOI: 10.3389/fcvm.2021.625072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 07/05/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Corin is a transmembrane serine protease that activates pro-forms of atrial and brain natriuretic peptides. Numerous studies have indicated that corin played an important role in cardiovascular diseases (CVDs). However, there have been few studies about the correlation between single-nucleotide polymorphisms (SNPs) in the 3' untranslated region (3'UTR) of CORIN and CVDs. The aims of this study were to investigate the associations of three SNPs (rs3749585, rs4695253, and rs12641823) in the 3'UTR of CORIN with CVDs and to find the seed regions of microRNAs (miRNAs) that bind to SNPs of CORIN. Methods and Results: A case–control study (n = 3,537) was performed in a Han population of northeastern China. CVDs included essential hypertension (EH), atrial fibrillation (AF), heart failure (HF), and coronary artery disease (CAD). Genotyping was performed using high-resolution melt analysis. In the EH-control study, rs3749585T was significantly associated with the risk of EH after adjusting for sex and age in allelic (padj = 0.049; OR: 1.113) and dominant (padj = 0.015, OR: 1.233) models. Rs4695253T was significantly associated with the risk of EH in the recessive model after adjusting for sex and age (padj = 0.005, OR: 2.084). Rs3749585T was significantly and negatively associated with AF in the dominant and additive models after adjusting for sex, age, EH, HF, T2DM, and CAD (dominant: padj = 0.009, OR: 0.762; additive: padj = 0.048, OR: 0.873). In the HF-control study and CAD-control study, none of the three SNPs was associated with HF and CAD after adjusting for covariates in any models (padj > 0.05). The levels of high-density lipoprotein (HDL) in rs4695253CC+CT were lower than the levels of HDL in rs4695253TT (42.47 ± 10.30 vs. 48.0 ± 10.24 mg/dl, padj = 0.008). The levels of total cholesterol (TC) in rs4695253CC+CT were lower than the levels of TC in rs4695253TT (164.01 ± 49.15 vs. 180.81 ± 43.92 mg/dl, padj = 0.036). Luciferase assay revealed that the relative luciferase activity of rs3749585CC-transfected cells was significantly decreased by miR-494-3p, in comparison to cells transfected with rs3749585TT (p < 0.001). A significant decrease in the relative luciferase activity of rs3749585TT reporter was observed as compared with rs3749585CC reporter in the presence of miR-1323 or miR-548o-3p (p = 0.017 and 0.012, respectively). Conclusions: We found significant associations between rs3749585T and rs4695253T and EH, between rs4695253T and the levels of TC and HDL, and between rs3749585T and AF. Hsa-miR-494-3p may serve as a potential therapeutic target for EH and AF patients in the future.
Collapse
Affiliation(s)
- Yichang Zhao
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaoyang Yuan
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yang Zhong
- Department of Cardiology, The Fifth People's Hospital of Dalian, Dalian, China
| | - Yutao Zhang
- Chinese Center for Disease Control and Prevention, National Institute of Occupational Health and Poison Control, Beijing, China
| | - Shushan Zhang
- Department of Ultrasonography, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Sisi Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Department of Epidemiology, School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yuanyuan Zhao
- Key Laboratory of Organ Transplantation, National Health Commission (NHC) Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Institute of Organ Transplantation, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjun Zheng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinqiu Liu
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yunlong Xia
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanzong Yang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Liu
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Feifei Chen
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Identification of miR-320 family members as potential diagnostic and prognostic biomarkers in myelodysplastic syndromes. Sci Rep 2021; 11:183. [PMID: 33420276 PMCID: PMC7794569 DOI: 10.1038/s41598-020-80571-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are characterized by ineffective hematopoiesis and the abnormal differentiation of hematopoietic stem cells. An increasing number of researches have demonstrated that microRNAs play crucial roles in the pathogenesis of myelodysplastic syndromes. Herein, we aimed to identify novel potential microRNAs bound up with the diagnosis and prognosis of MDS. MiRNA microarray analysis was used to screen deregulated microRNAs in the bone marrow of MDS patients. qRT-PCR was employed to confirm the microarray results. All members of miR-320 family (miR-320a, miR-320b, miR-320c, miR-320d, and miR-320e) were significantly increased in MDS patients compared to normal control. Although we found no correlation between miR-320 family and most clinical characteristics, high miR-320c and miR-320d expression seemed to be associated with high numbers of bone marrow (BM) blasts and worse karyotype. High expression of all the members of the miR-320 family seemed to be associated with a high prognostic score based on International Prognostic Scoring System (IPSS). The areas under the miR-320 family member ROC curves were 0.9037 (P < 0.0001), 0.7515 (P = 0.0002), 0.9647 (P < 0.0001), 0.8064 (P < 0.0001) and 0.9019 (P < 0.0001). Regarding Kaplan-Meier analysis, high miR-320c and miR-320d expression were related to shorter overall survival (OS). Moreover, multivariate analysis revealed the independent prognostic value of miR-320d for OS in MDS. The expression of miR-320 family members was up-regulated in MDS, and miR-320 family members could serve as candidate diagnostic biomarkers for MDS. High expression of miR-320d was an independent prognostic factor for OS in MDS.
Collapse
|