1
|
Yao ZX, Tu JH, Liu YL, Xue XF, Qin L. Long Non-coding RNA LINC00342 Promotes the Proliferation, Invasion, and Migration of Primary Hepatocellular Carcinoma Cells by Regulating the Expression of miRNA-19a-3p, miRNA-545-5p, and miRNA-203a-3p. Biochem Genet 2024; 62:675-697. [PMID: 37395850 DOI: 10.1007/s10528-023-10420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/07/2023] [Indexed: 07/04/2023]
Abstract
This study aimed to investigate the role of the long non-coding RNA (lncRNA) LINC00342-207 (LINC00342) in the development and progression of primary hepatocellular carcinoma (HCC). Forty-two surgically resected HCC tissues and corresponding paracancerous tissues were collected from October 2019 to December 2020 and examined for lncRNA LINC00342, microRNA (miR)-19a-3p, miR-545-5p, miR-203a-3p, cell cycle protein D1 (CyclinD1/CCND1), murine double minute 2 (MDM2), and fibroblast growth factor 2 (FGF2) expression. The disease-free survival and overall survival of patients with HCC were followed up. HCC cell lines and the normal hepatocyte cell line HL-7702 were cultured and the expression level of LINC00342 was measured. HepG2 cells were transfected with LINC00342 siRNA, LINC00342 overexpression plasmid, miR-19a-3p mimics and their corresponding suppressors, miR-545-5p mimics and their corresponding suppressors, and miR-203a-3p mimics and their corresponding suppressors. The proliferation, apoptosis, migration, and invasion of HepG2 cells were detected. Stably transfected HepG2 cells were inoculated into the left axilla of male BALB/c nude mice, and the volume and quality of transplanted tumors as well as the expression levels of LINC00342, miR-19a-3p, miR-545-5p, miR-203a-3p, CCND1, MDM2, and FGF2 were examined. LINC00342 played an oncogenic role in HCC and exhibited inhibitory effects on proliferation, migration, and invasion, and promoted the apoptosis of HepG2 cells. Moreover, it inhibited the growth of transplanted tumors in vivo in mice. Mechanistically, the oncogenic effect of LINC00342 was associated with the targeted regulation of the miR-19a-3p/CCND1, miR-545-5p/MDM2, and miR-203a-3p/FGF2 axes.
Collapse
Affiliation(s)
- Zong-Xi Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215031, China
- Department of General Surgery, Suzhou Wuzhong People's Hospital, Suzhou, 215128, China
| | - Jun-Hao Tu
- Department of General Surgery, Suzhou Wuzhong People's Hospital, Suzhou, 215128, China
| | - Yu-Lin Liu
- Department of General Surgery, Suzhou Wuzhong People's Hospital, Suzhou, 215128, China
| | - Xiao-Feng Xue
- Department of General Surgery, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215031, China.
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215031, China.
| |
Collapse
|
2
|
Wang L, Wang X, Sun H, Wang W, Cao L. A pan-cancer analysis of the role of HOXD1, HOXD3, and HOXD4 and validation in renal cell carcinoma. Aging (Albany NY) 2023; 15:10746-10766. [PMID: 37827698 PMCID: PMC10599751 DOI: 10.18632/aging.205116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
HOXD1, HOXD3, and HOXD4 are members of the HOXD genes family and are related to tumorigenesis of the tumor. However, whether HOXDs (1, 3, 4) have a crucial role across pan-cancer is still unknown. HOXD1, HOXD3, and HOXD4 expressions were analyzed using public databases in 33 types of tumors. The UCSC Xena website was carried out to investigate the relationship between the expression of genes and the progress of cancers. The biological functions of HOXD3 were tested by colony forming, transwell, wound healing, and xenograft assay in vitro and in vivo. GSEA was used to identify the associated cancer hallmarks with HOXDs expression. Immune cell infiltration analysis was applied to verify the immune cell infiltrations related to genes. The results showed HOXD1, HOXD3, and HOXD4 co-low expressed in BRCA, COAD, KICH, KIRC, KIRP, READ, and TGCT. In the KIRC, all of HOXDs expression was connected with tumor stage and histological grade. Upregulation of HOXDs was associated with improved OS, DSS, and PFI. Down-expression of HOXD3 induced cell proliferation, migration, and invasion in vivo and in vitro. In addition, HOXDs were connected with immune-activated hallmarks and cancer immune cell infiltrations. These findings demonstrated that HOXDs may be indicative biomarkers for the prognosis and immunotherapy in pan-cancer.
Collapse
Affiliation(s)
- Lumin Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| | - Xiaofei Wang
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, P.R. China
| | - Haifeng Sun
- The Third Department of Medical Oncology, Shaanxi Provincial Cancer Hospital Affiliated to Medical College of Xi’an Jiaotong University, Xi’an, Shaanxi 710065, P.R. China
| | - Wenjing Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, P.R. China
| | - Li Cao
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, P.R. China
| |
Collapse
|
3
|
Fang X, Huang E, Xie X, Yang K, Wang S, Huang X, Song M. A novel senescence-related lncRNA signature that predicts prognosis and the tumor microenvironment in patients with lung adenocarcinoma. Front Genet 2022; 13:951311. [PMID: 36406130 PMCID: PMC9669975 DOI: 10.3389/fgene.2022.951311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Cellular senescence has recently been considered a new cancer hallmark. However, the factors regulating cellular senescence have not been well characterized. The aim of this study is to identify long non-coding RNAs (lncRNAs) associated with senescence and prognosis in patients with lung adenocarcinoma (LUAD). Methods: Using RNA sequence data from the Cancer Genome Atlas Lung Adenocarcinoma (TCGA-LUAD) and senescence genes from the CellAge database, a subset of senescence-related lncRNAs was first identified. Then, using univariate and multivariate Cox regression analyses, a senescence lncRNA signature (LUADSenLncSig) associated with LUAD prognosis was developed. Based on the median LUADSenLncSig risk score, LUAD patients were divided into high-risk and low-risk groups. Kaplan-Meier analysis was used to compare the overall survival (OS) in the high- and low-risk score subgroups. Differences in Gene Set Enrichment Analysis (GSEA), immune infiltration, tumor mutation burden (TMB), tumor immune dysfunction and exclusion (TIDE) module score, chemotherapy, and targeted therapy selection were also compared between the high-risk and low-risk groups. Results: A prognostic risk model was obtained consisting of the following nine senescence-related lncRNAs: LINC01116, AC005838.2, SH3PXD2A-AS1, VIMS-AS1, SH3BP5-AS1, AC092279.1, AC026355.1, AC027020.2, and LINC00996. The LUADSenLncSig high-risk group was associated with poor OS (hazard ratio = 1.17, 95% confidence interval = 1.102-1.242; p < 0.001). The accuracy of the model was further supported based on receiver operating characteristic (ROC), principal component analysis (PCA), and internal validation cohorts. In addition, a nomogram was developed consisting of LUADSenLncSig for LUAD prognosis, which is consistent with the actual probability of OS. Furthermore, immune infiltration analysis showed the low-risk group had a stronger anti-tumor immune response in the tumor microenvironment. Notably, the levels of immune checkpoint genes such as CTLA-4, PDCD-1, and CD274, and the TIDE scores were significantly higher in the low-risk subgroups than in high-risk subgroups (p < 0.001). This finding indicates the LUADSenLncSig can potentially predict immunotherapy efficacy. Conclusion: In this study, a lncRNA signature, LUADSenLncSig, that has dual functions of senescence phenotype identification and prognostic prediction as well as the potential to predict the LUAD response to immunotherapy was developed.
Collapse
Affiliation(s)
- Xueying Fang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Enmin Huang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaopeng Xie
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Kai Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Shuqian Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiaoqing Huang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Mei Song
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
4
|
Chen B, Gao C, Wang H, Sun J, Han Z. Molecular Analysis of Prognosis and Immune Infiltration of Ovarian Cancer Based on Homeobox D Genes. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3268386. [PMID: 36213580 PMCID: PMC9537619 DOI: 10.1155/2022/3268386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 12/24/2022]
Abstract
Background Homeobox D (HOXD) genes were associated with cancer pathogenesis. However, the role of HOXD genes in ovarian cancer (OC) and the possible mechanisms involved are unclear. In this study, we analyzed the function and regulatory mechanisms and functions of HOXD genes in OC based on comprehensive bioinformatics analysis. Methods Expression of HOXD1/3/4/8/9/10/11/12/13 mRNA was analyzed between OC tissue and normal tissue using ONCOMINE, GEO, and TCGA databases. The relationship between HOXD expression and clinical stage was studied by GEPIA. The Kaplan-Meier plotter was used to analyze prognosis. cBioPortal was used to analyze the mutation and coexpression of HOXDs. GO and KEGG analyses were performed by the DAVID software to predict the function of HOXD coexpression genes. Immune infiltration analysis was used to evaluate the relationship between the expression of HOXD genes and 24 immune infiltrating cells. Results The expression of HOXD3/4/8/9/10/11 was significantly lower in OC tissues than in normal ovarian tissues, while the expression of HOXD1/12/13 was significantly higher in OC tissues. The expression of HOXD genes was associated with FIGO stage, primary therapy outcome, tumor status, anatomic neoplasm subdivision, and age. The expression levels of HOXD1/3/4/8/9/10 correlated with tumor stage. HOXD1/8/9 could be served as ideal biomarkers to distinguish OC from normal tissue. Low HOXD9 expression was associated with shorter overall survival (OS) (HR: 0.75; 95% CI: 0.58-0.98; P = 0.034) and progression-free survival (PFS) (HR: 0.69; 95% CI: 0.54-0.87; P = 0.002). The HOXD coexpression genes were associated with pathways including cell cycle, TGF-beta signaling pathway, cellular senescence, and Hippo signaling pathway. HOXD genes were significantly associated with immune infiltration. Conclusion The expression of HOXD genes is associated with clinical characteristics. HOXD9 is a new biomarker of prognosis in OC, and HOXD1/4/8/9/10 may be potential therapeutic targets. The members of the HOXD genes may be the response to immunotherapy for OC.
Collapse
Affiliation(s)
- Buze Chen
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000 Jiangsu, China
- Xuzhou Medical University, Xuzhou, 221000 Jiangsu, China
| | - Cui Gao
- Department of Obstetrics, Jinhu County People's Hospital, Huai'an, 223000 Jiangsu, China
| | - Haihong Wang
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000 Jiangsu, China
| | - Jieyun Sun
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000 Jiangsu, China
| | - Zhengxiang Han
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000 Jiangsu, China
| |
Collapse
|
5
|
Lu K, Pan Y, Huang Z, Liang H, Ding ZY, Zhang B. TRIM proteins in hepatocellular carcinoma. J Biomed Sci 2022; 29:69. [PMID: 36100865 PMCID: PMC9469581 DOI: 10.1186/s12929-022-00854-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022] Open
Abstract
The tripartite motif (TRIM) protein family is a highly conserved group of E3 ligases with 77 members known in the human, most of which consist of a RING-finger domain, one or two B-box domains, and a coiled-coil domain. Generally, TRIM proteins function as E3 ligases to facilitate specific proteasomal degradation of target proteins. In addition, E3 ligase independent functions of TRIM protein were also reported. In hepatocellular carcinoma, expressions of TRIM proteins are both regulated by genetic and epigenetic mechanisms. TRIM proteins regulate multiple biological activities and signaling cascades. And TRIM proteins influence hallmarks of HCC. This review systematically demonstrates the versatile roles of TRIM proteins in HCC and helps us better understand the molecular mechanism of the development and progression of HCC.
Collapse
Affiliation(s)
- Kan Lu
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
| | - Yonglong Pan
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
| | - Zhao Huang
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
| | - Ze-Yang Ding
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China. .,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China. .,Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China. .,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China. .,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China. .,Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China. .,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
6
|
Li HC, Yang CH, Lo SY. Long noncoding RNAs in hepatitis B virus replication and oncogenesis. World J Gastroenterol 2022; 28:2823-2842. [PMID: 35978877 PMCID: PMC9280728 DOI: 10.3748/wjg.v28.i25.2823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/16/2022] [Accepted: 05/22/2022] [Indexed: 02/06/2023] Open
Abstract
Several diverse long noncoding RNAs (lncRNAs) have been identified to be involved in hepatitis B virus (HBV) replication and oncogenesis, especially those dysregulated in HBV-related hepatocellular carcinoma (HCC). Most of these dysregulated lncRNAs are modulated by the HBV X protein. The regulatory mechanisms of some lncRNAs in HBV replication and oncogenesis have been characterized. Genetic polymorphisms of several lncRNAs affecting HBV replication or oncogenesis have also been studied. The prognosis of HCC remains poor. It is important to identify novel tumor markers for early diagnosis and find more therapeutic targets for effective treatments of HCC. Some dysregulated lncRNAs in HBV-related HCC may become biomarkers for early diagnosis and/or the therapeutic targets of HCC. This mini-review summarizes these findings briefly, focusing on recent developments.
Collapse
Affiliation(s)
- Hui-Chun Li
- Department of Biochemistry, Tzu Chi University, Hualien 97004, Taiwan
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan
| | - Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan
| |
Collapse
|
7
|
Huang E, Ma T, Zhou J, Ma N, Yang W, Liu C, Hou Z, Chen S, de Castria TB, Zeng B, Zong Z, Zhou T. The development and validation of a novel senescence-related long-chain non-coding RNA (lncRNA) signature that predicts prognosis and the tumor microenvironment of patients with hepatocellular carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:766. [PMID: 35965795 PMCID: PMC9372681 DOI: 10.21037/atm-22-3348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/08/2022] [Indexed: 01/21/2023]
Abstract
Background The epigenetic regulators of cellular senescence, especially long non-coding RNAs (lncRNAs), remain unclear. The expression levels of lncRNA were previously known to be prognostic indicators for tumors. We hypothesized that lncRNAs regulating cellular senescence could also predict prognosis in patients with hepatocellular carcinoma (HCC) and developed a novel lncRNA predictive signature. Methods Using RNA sequencing data from The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) database, a co-expression network of senescence-related messenger RNAs (mRNAs) and lncRNAs was constructed. Using univariate Cox regression analysis and a stepwise multiple Cox regression analysis, we constructed a prognostic HCC senescence-related lncRNA signature (HCCSenLncSig). Kaplan-Meier analysis was used to compare the overall survival (OS) of high- and low-risk groups stratified by the HCCSenLncSig. Furthermore, the HCCSenLncSig risk score and other clinical characteristics were included to develop an HCC prognostic nomogram. The accuracy of the model was evaluated by the time dependent receiver operating characteristic (ROC) and calibration curves, respectively. Results We obtained a prognostic risk model consisting of 8 senescence-related lncRNAs: AL117336.3, AC103760.1, FOXD2-AS1, AC009283.1, AC026401.3, AC021491.4, AC124067.4, and RHPN1-AS1. The HCCSenLncSig high-risk group was associated with poor OS [hazard ratio (HR) =1.125, 95% confidence interval (CI): 1.082-1.169; P<0.001]. The accuracy of the model was further supported by ROC curves (the area under the curve is 0.783, sensitivity of 0.600, and specificity of 0.896 at the cut-off value of 1.447). The HCCSenLncSig was found to be an independent prognostic factor from other clinical factors in both univariate and multivariate Cox regression analyses. The prognostic nomogram shows HCCSenLncSig has a good prognostic effect for survival risk stratification. Finally, we found that a higher number of immunosuppressed Treg cells infiltrate in high-risk patients (P<0.001 compared to low-risk patients), possibly explaining why these patients have a poor prognosis. On the other hand, the expression of immunotherapy markers, such as CD276, PDCD1, and CTLA4, was also up-regulated in the high-risk patients, indicating potential immunotherapy response in these patients. Conclusions The development of HCCSenLncSig allows us to better predict HCC patients' survival outcomes and disease risk, as well as contribute to the development of novel HCC anti-cancer therapeutic strategies.
Collapse
Affiliation(s)
- Enmin Huang
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China;,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Ma
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China;,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junyi Zhou
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China;,Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ning Ma
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China;,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weisheng Yang
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China;,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuangxiong Liu
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China;,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zehui Hou
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China;,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuang Chen
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China;,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | - Bing Zeng
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China;,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhen Zong
- Department of Gastroenterological Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Taicheng Zhou
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China;,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|