1
|
Imai H, Sakamoto Y, Takahashi S, Shibata H, Sato A, Otsuka K, Amagai K, Takahashi M, Yamaguchi T, Ishioka C. Efficacy of adding levofloxacin to gemcitabine and nanoparticle-albumin-binding paclitaxel combination therapy in patients with advanced pancreatic cancer: study protocol for a multicenter, randomized phase 2 trial (T-CORE2201). BMC Cancer 2024; 24:262. [PMID: 38402399 PMCID: PMC10893736 DOI: 10.1186/s12885-024-11973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Advanced pancreatic cancer is one of the leading causes of cancer-related deaths. For patients with advanced pancreatic cancer, gemcitabine and nanoparticle albumin-binding paclitaxel (nabPTX) combination (GEM/nabPTX) therapy is one of the recommended first-line treatments. Several retrospective studies have suggested that the addition of levofloxacin improves the efficacy of GEM/nabPTX therapy in patients with advanced pancreatic cancer. This prospective study aims to evaluate whether the addition of antibiotics improves the treatment efficacy of GEM/nabPTX as a first-line chemotherapy in patients with advanced pancreatic cancer. METHODS This multicenter, prospective, randomized, phase 2 trial will included 140 patients. Patients with advanced pancreatic cancer will be randomized in a 1:1 ratio to either the GEM/nabPTX therapy group or the GEM/nabPTX plus levofloxacin group. The primary endpoint for the two groups is median progression-free survival time (mPFS) for the full analysis set (FAS). The secondary endpoints for the two groups are median overall survival (mOS), response rate (RR), disease control rate (DCR), and adverse event (AE) for the FAS and mPFS, mOS, RR, DCR, and AE for the per-protocol set. This study will enroll patients treated with GEM/nabPTX as the first-line chemotherapy for stage IV pancreatic adenocarcinoma. DISCUSSION GEM/nabPTX is a standard first-line chemotherapy regimen for patients with advanced pancreatic cancer. Recently, the superiority of 5-fluorouracil, liposomal irinotecan, and oxaliplatin combination therapy (NALIRIFOX) to GEM/nabPTX as first-line therapy for pancreatic cancer has been reported. However, the efficacy of NALIRIFOX is inadequate. Based on previous retrospective studies, it is hypothesized that treatment efficacy will improve when levofloxacin is added to GEM/nabPTX therapy. If the AEs (such as leukopenia, neutropenia, and peripheral neuropathy) that occur at an increased rate with levofloxacin and GEM/nabPTX combination therapy can be carefully monitored and properly managed, this simple intervention can be expected to improve the prognosis of patients with advanced pancreatic cancer. TRIAL REGISTRATION This study was registered with the Japan Registry of Clinical Trials (jRCT; registry number: jRCTs021230005).
Collapse
Affiliation(s)
- Hiroo Imai
- Department of Medical Oncology, Tohoku University Hospital, Sendai City, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai City, Japan
| | - Yasuhiro Sakamoto
- Department of Medical Oncology, Osaki Citizen Hospital, Osaki City, Japan
| | - Shin Takahashi
- Chemotherapeutic Center, Sendai Kousei Hospital, Sendai City, Japan
| | - Hiroyuki Shibata
- Department of Clinical Oncology, Akita University Graduate School of Medicine, Akita City, Japan
| | - Atsushi Sato
- Department of Medical Oncology, Hirosaki University Graduate School of Medicine, Hirosaki City, Japan
| | - Kazunori Otsuka
- Department of Medical Oncology, Miyagi Cancer Center, Natori City, Japan
| | - Kenji Amagai
- Department of Gastroenterology and Medical Oncology, Ibaraki Prefectural Central Hospital, Kasama City, Japan
| | - Masanobu Takahashi
- Department of Medical Oncology, Tohoku University Hospital, Sendai City, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai City, Japan
| | - Takuhiro Yamaguchi
- Clinical Research, Innovation and Education Center, Tohoku University Hospital, Sendai City, Japan
| | - Chikashi Ishioka
- Department of Medical Oncology, Tohoku University Hospital, Sendai City, Japan.
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai City, Japan.
| |
Collapse
|
2
|
Mendes I, Vale N. Overcoming Microbiome-Acquired Gemcitabine Resistance in Pancreatic Ductal Adenocarcinoma. Biomedicines 2024; 12:227. [PMID: 38275398 PMCID: PMC10813061 DOI: 10.3390/biomedicines12010227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Gastrointestinal cancers (GICs) are one of the most recurrent diseases in the world. Among all GICs, pancreatic cancer (PC) is one of the deadliest and continues to disrupt people's lives worldwide. The most frequent pancreatic cancer type is pancreatic ductal adenocarcinoma (PDAC), representing 90 to 95% of all pancreatic malignancies. PC is one of the cancers with the worst prognoses due to its non-specific symptoms that lead to a late diagnosis, but also due to the high resistance it develops to anticancer drugs. Gemcitabine is a standard treatment option for PDAC, however, resistance to this anticancer drug develops very fast. The microbiome was recently classified as a cancer hallmark and has emerged in several studies detailing how it promotes drug resistance. However, this area of study still has seen very little development, and more answers will help in developing personalized medicine. PC is one of the cancers with the highest mortality rates; therefore, it is crucial to explore how the microbiome may mold the response to reference drugs used in PDAC, such as gemcitabine. In this article, we provide a review of what has already been investigated regarding the impact that the microbiome has on the development of PDAC in terms of its effect on the gemcitabine pathway, which may influence the response to gemcitabine. Therapeutic advances in this type of GIC could bring innovative solutions and more effective therapeutic strategies for other types of GIC, such as colorectal cancer (CRC), due to its close relation with the microbiome.
Collapse
Affiliation(s)
- Inês Mendes
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Edifício de Geociências, 5000-801 Vila Real, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
3
|
de Castilhos J, Tillmanns K, Blessing J, Laraño A, Borisov V, Stein-Thoeringer CK. Microbiome and pancreatic cancer: time to think about chemotherapy. Gut Microbes 2024; 16:2374596. [PMID: 39024520 PMCID: PMC11259062 DOI: 10.1080/19490976.2024.2374596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer characterized by late diagnosis, rapid progression, and a high mortality rate. Its complex biology, characterized by a dense, stromal tumor environment with an immunosuppressive milieu, contributes to resistance against standard treatments like chemotherapy and radiation. This comprehensive review explores the dynamic role of the microbiome in modulating chemotherapy efficacy and outcomes in PDAC. It delves into the microbiome's impact on drug metabolism and resistance, and the interaction between microbial elements, drugs, and human biology. We also highlight the significance of specific bacterial species and microbial enzymes in influencing drug action and the immune response in the tumor microenvironment. Cutting-edge methodologies, including artificial intelligence, low-biomass microbiome analysis and patient-derived organoid models, are discussed, offering insights into the nuanced interactions between microbes and cancer cells. The potential of microbiome-based interventions as adjuncts to conventional PDAC treatments are discussed, paving the way for personalized therapy approaches. This review synthesizes recent research to provide an in-depth understanding of how the microbiome affects chemotherapy efficacy. It focuses on elucidating key mechanisms and identifying existing knowledge gaps. Addressing these gaps is crucial for enhancing personalized medicine and refining cancer treatment strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Juliana de Castilhos
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Katharina Tillmanns
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Jana Blessing
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Arnelyn Laraño
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Vadim Borisov
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Christoph K. Stein-Thoeringer
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| |
Collapse
|
4
|
Papa V, Schepis T, Coppola G, Chiappetta MF, Del Vecchio LE, Rozera T, Quero G, Gasbarrini A, Alfieri S, Papa A. The Role of Microbiota in Pancreatic Cancer. Cancers (Basel) 2023; 15:3143. [PMID: 37370753 DOI: 10.3390/cancers15123143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Pancreatic cancer (PC) has an unfavorable prognosis with few effective therapeutic options. This has led researchers to investigate the possible links between microbiota and PC. A disrupted gut microbiome can lead to chronic inflammation, which is involved in the pathogenesis of PC. In addition, some bacterial strains can produce carcinogens that promote the growth of cancer cells. Research has also focused on pancreatic and oral microbiota. Changes in these microbiota can contribute to the development and progression of PC. Furthermore, patients with periodontal disease have an increased risk of developing PC. The potential use of microbiota as a prognostic marker or to predict patients' responses to chemotherapy or immunotherapy is also being explored. Overall, the role of microbiota-including the gut, pancreatic, and oral microbiota-in PC is an active research area. Understanding these associations could lead to new diagnostic and therapeutic targets for this deadly disease.
Collapse
Affiliation(s)
- Valerio Papa
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University, 00168 Rome, Italy
- Digestive Surgery Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Tommaso Schepis
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Gaetano Coppola
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Michele Francesco Chiappetta
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Livio Enrico Del Vecchio
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Tommaso Rozera
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Giuseppe Quero
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University, 00168 Rome, Italy
- Digestive Surgery Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University, 00168 Rome, Italy
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Sergio Alfieri
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University, 00168 Rome, Italy
- Digestive Surgery Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Alfredo Papa
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University, 00168 Rome, Italy
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
5
|
Attebury H, Daley D. The Gut Microbiome and Pancreatic Cancer Development and Treatment. Cancer J 2023; 29:49-56. [PMID: 36957973 PMCID: PMC10042586 DOI: 10.1097/ppo.0000000000000647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
ABSTRACT Changes in the gut microbiome have been increasingly shown to accompany oncogenesis across various tumors. Similarly, microbial dysbiosis was found to be associated with pancreatic cancer progression and survival outcomes, expanding the field of tumor microenvironment research in pancreatic cancer. Mechanistic studies in pancreatic cancer models implicate components of the gut and pancreatic cancer microbiome in regulating tumorigenesis by altering cancer cell signaling, modulating immune function, and influencing the efficacy of current therapies in pancreatic cancer. This review discusses the outcomes of microbial modulation across various preclinical and clinical studies and highlights ongoing trials targeting the microbiome for pancreatic cancer therapy.
Collapse
|
6
|
Wang G, He X, Wang Q. Intratumoral bacteria are an important "accomplice" in tumor development and metastasis. Biochim Biophys Acta Rev Cancer 2023; 1878:188846. [PMID: 36496095 DOI: 10.1016/j.bbcan.2022.188846] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/09/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
As emerging tumor components, intratumoral bacteria have been found in many solid tumors. Several studies have demonstrated that different cancer subtypes have distinct microbial compositions, and mechanistic studies have shown that intratumoral bacteria may promote cancer initiation and progression through DNA damage, epigenetic modification, inflammatory responses, modulation of host immunity and activation of oncogenes or oncogenic pathways. Moreover, intratumoral bacteria have been shown to modulate tumor metastasis and chemotherapy response. A better understanding of the tumor microenvironment and its associated microbiota will facilitate the design of new metabolically engineered species, opening up a new era of intratumoral bacteria-based cancer therapy. However, many questions remain to be resolved, such as where intratumoral bacteria originate and whether there is a direct causal relationship between intratumoral bacteria and tumor susceptibility. In addition, suitable preclinical models and more advanced detection techniques are crucial for studying the biological functions of intratumoral bacteria. In this review, we summarize the complicated role of intratumoral bacteria in the regulation of cancer development and metastasis and discuss their carcinogenic mechanisms and potential therapeutic aspects.
Collapse
Affiliation(s)
- Gang Wang
- Department of General Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China; Department of General Surgery, The 74th Group Army Hospital, Guangzhou 510318, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an 710032, Shaanxi, China.
| | - Qian Wang
- Department of General Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
7
|
He X, Yao Q, Fan D, You Y, Lian W, Zhou Z, Duan L. Combination of levofloxacin and cisplatin enhances anticancer efficacy via co-regulation of eight cancer-associated genes. Discov Oncol 2022; 13:76. [PMID: 35984577 PMCID: PMC9391551 DOI: 10.1007/s12672-022-00541-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/15/2022] [Indexed: 04/17/2023] Open
Abstract
Chemosensitizer or combined chemotherapy can sensitize cancer cells to therapy and minimize drug resistance. We reveal that levofloxacin has broad-spectrum anticancer activity. Here we report that combination of levofloxacin and cisplatin further enhanced cytotoxicity in cancer cells by further promotion of apoptosis. Levofloxacin concentration-dependently promoted the inhibition of clone formation in cancer cells treated by cisplatin, and their combination further suppressed the tumor growth in mice. Levofloxacin and cisplatin co-regulated genes in directions supporting the enhancement of anticancer efficacy, of which, THBS1, TNFAIP3, LAPTM5, PI3 and IL24 were further upregulated, NCOA5, SRSF6 and SFPQ were further downregulated. Out of the 24 apoptotic pathways significantly enriched in the combination group, TNFAIP3, THBS1, SRSF6 and SFPQ overlapped in 14, 13, 3 and 1 pathway respectively. Jak-STAT/Cytokine-cytokine receptor interaction pathway network and extrinsic apoptotic signaling pathway were significantly enriched in levofloxacin group, cisplatin group and combination group. Jak-STAT/Cytokine-cytokine receptor interaction/Focal adhesion/EMC-receptor interaction pathway network was significantly enriched in the combination group, and IL24 and THBS1 were the overlapped genes. In conclusion, enhancement of anticancer efficacy in combination group was associated with the further regulation of THBS1, TNFAIP3, LAPTM5, PI3, IL24 and NCOA5, SFPQ, SRSF6. Targeting of Jak-STAT/Cytokine-cytokine receptor interaction/Focal adhesion/EMC-receptor interaction pathway network was correlated to the enhancement. With additional benefit to cancer patients for treatment or prophylaxis of an infectious syndrome, levofloxacin can benefit cancer chemotherapy no matter it is used independently or used with other chemotherapeutic drugs.
Collapse
Affiliation(s)
- Xiaoqiong He
- School of Public Health, Kunming Medical University, Kunming, 650500, Yunnan Province, People's Republic of China.
| | - Qian Yao
- Institute of Yunnan Tumor, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan Province, People's Republic of China
| | - Dan Fan
- School of Public Health, Kunming Medical University, Kunming, 650500, Yunnan Province, People's Republic of China
| | - Yutong You
- School of Public Health, Kunming Medical University, Kunming, 650500, Yunnan Province, People's Republic of China
| | - Wenjing Lian
- School of Public Health, Kunming Medical University, Kunming, 650500, Yunnan Province, People's Republic of China
| | - Zhangping Zhou
- School of Public Health, Kunming Medical University, Kunming, 650500, Yunnan Province, People's Republic of China
| | - Ling Duan
- School of Public Health, Kunming Medical University, Kunming, 650500, Yunnan Province, People's Republic of China
| |
Collapse
|
8
|
Daley D. The Role of the Microbiome in Pancreatic Oncogenesis. Int Immunol 2022; 34:447-454. [PMID: 35863313 DOI: 10.1093/intimm/dxac036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/20/2022] [Indexed: 11/12/2022] Open
Abstract
Bacterial dysbiosis is evolving as an advocate for carcinogenesis and has been associated with pancreatic cancer progression and survival outcomes. The gut and pancreas of cancer patients harbor a unique microbiome that differs significantly from that of healthy individuals. We believe that the pancreatic cancer microbiome regulates tumorigenesis by altering host cell function and modulating immune cells, skewing them towards an immunosuppressive phenotype. Moreover, altering this pathogenic microbiome may enhance the efficacy of current therapies in pancreatic cancer and improve survival outcomes. This review highlights the findings on microbial modulation across various pre-clinical and clinical studies and provides insight into the potential of targeting the microbiome for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Donnele Daley
- Department of Surgery, University of Michigan, 1500 E Medical Center Drive, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Ting NLN, Lau HCH, Yu J. Cancer pharmacomicrobiomics: targeting microbiota to optimise cancer therapy outcomes. Gut 2022; 71:1412-1425. [PMID: 35277453 PMCID: PMC9185832 DOI: 10.1136/gutjnl-2021-326264] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/25/2022] [Indexed: 02/06/2023]
Abstract
Despite the promising advances in novel cancer therapy such as immune checkpoint inhibitors (ICIs), limitations including therapeutic resistance and toxicity remain. In recent years, the relationship between gut microbiota and cancer has been extensively studied. Accumulating evidence reveals the role of microbiota in defining cancer therapeutic efficacy and toxicity. Unlike host genetics, microbiota can be easily modified via multiple strategies, including faecal microbiota transplantation (FMT), probiotics and antibiotics. Preclinical studies have identified the mechanisms on how microbes influence cancer treatment outcomes. Clinical trials have also demonstrated the potential of microbiota modulation in cancer treatments. Herein, we review the mechanistic insights of gut microbial interactions with chemotherapy and ICIs, particularly focusing on the interplay between gut bacteria and the pharmacokinetics (eg, metabolism, enzymatic degradation) or pharmacodynamics (eg, immunomodulation) of cancer treatment. The translational potential of basic findings in clinical settings is then explored, including using microbes as predictive biomarkers and microbial modulation by antibiotics, probiotics, prebiotics, dietary modulations and FMT. We further discuss the current limitations of gut microbiota modulation in patients with cancer and suggest essential directions for future study. In the era of personalised medicine, it is crucial to understand the microbiota and its interactions with cancer. Manipulating the gut microbiota to augment cancer therapeutic responses can provide new insights into cancer treatment.
Collapse
Affiliation(s)
- Nick Lung-Ngai Ting
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
10
|
Nakano S, Kawamoto Y, Komatsu Y, Saito R, Ito K, Yamamura T, Harada K, Yuki S, Kawakubo K, Sugiura R, Kato S, Hirata K, Hirata H, Nakajima M, Furukawa R, Takishin Y, Nagai K, Yokota I, Ota KH, Nakaoka S, Kuwatani M, Sakamoto N. Analysis of the Pancreatic Cancer Microbiome Using Endoscopic Ultrasound-Guided Fine-Needle Aspiration-Derived Samples. Pancreas 2022; 51:351-357. [PMID: 35695806 PMCID: PMC9257056 DOI: 10.1097/mpa.0000000000002028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 04/29/2022] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Most previous studies have analyzed bacteria in tumors using resected pancreatic cancer (PC) tissues, because it is difficult to obtain tissue samples from unresectable advanced PC. We aimed to determine whether minimal tissue obtained by endoscopic ultrasound-guided fine-needle aspiration is useful for microbiome analysis. METHODS Thirty PC and matched duodenal and stomach tissues (N = 90) were prospectively collected from 30 patients who underwent endoscopic ultrasound-guided fine-needle aspiration. Bacterial DNA was extracted, and 16S rRNA sequencing was performed. The primary outcome was the success rate of bacterial detection in tumors. Bacterial diversity and structure were investigated. RESULTS The bacterial detection rates were 80%, 100%, and 97% in PC, gastric, and duodenal samples, respectively. Pancreatic cancer tissues showed a lower α-diversity and a significantly different microbial structure than stomach and duodenal tissues. Proteobacteria were more abundant, whereas Firmicutes, Bacteroidetes, and Fusobacteria were less abundant in PC tissues than in stomach and duodenal tissues. Acinetobacter was more abundant in PC tissues than in stomach and duodenal tissues, and Delftia was more frequently detected in resectable PC. CONCLUSIONS Endoscopic ultrasound-guided fine-needle aspiration samples were valuable for PC microbiome analysis, revealing that the bacterial composition of PC is different from that of the stomach and duodenum.
Collapse
Affiliation(s)
- Shintaro Nakano
- From the Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine
- Division of Cancer Center, Hokkaido University Hospital, Sapporo
| | | | - Yoshito Komatsu
- Division of Cancer Center, Hokkaido University Hospital, Sapporo
| | - Rika Saito
- From the Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine
- Division of Cancer Center, Hokkaido University Hospital, Sapporo
| | - Ken Ito
- From the Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine
- Division of Cancer Center, Hokkaido University Hospital, Sapporo
| | - Takahiro Yamamura
- From the Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine
| | - Kazuaki Harada
- From the Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine
| | - Satoshi Yuki
- From the Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine
| | - Kazumichi Kawakubo
- From the Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine
| | - Ryo Sugiura
- Department of Gastroenterology and Hepatology, Hakodate Municipal Hospital, Hakodate
| | - Shin Kato
- Department of Gastroenterology, Sapporo City General Hospital
| | - Koji Hirata
- Department of Gastroenterology, Sapporo Hokuyu Hospital
| | - Hajime Hirata
- From the Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine
| | | | - Ryutaro Furukawa
- From the Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine
| | - Yunosuke Takishin
- From the Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine
| | - Kousuke Nagai
- From the Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine
| | - Isao Yokota
- Department of Biostatistics, Hokkaido University Graduate School of Medicine
| | - Keisuke H. Ota
- Laboratory of Mathematical Biology, Hokkaido University Graduate School of Life Science
| | - Shinji Nakaoka
- Laboratory of Mathematical Biology, Hokkaido University Faculty of Advanced Life Science, Sapporo, Japan
| | - Masaki Kuwatani
- From the Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine
| | - Naoya Sakamoto
- From the Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine
| |
Collapse
|
11
|
pH-taxis drives aerobic bacteria in duodenum to migrate into the pancreas with tumors. Sci Rep 2022; 12:1783. [PMID: 35110595 PMCID: PMC8810860 DOI: 10.1038/s41598-022-05554-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/13/2022] [Indexed: 01/07/2023] Open
Abstract
As oral or intestinal bacteria have been found in pancreatic cystic fluid and tumors, understanding bacterial migration from the duodenum into the pancreas via hepato-pancreatic duct is critical. Mathematical models of migration of aerobic bacteria from the duodenum to the pancreas with tumors were developed. Additionally, the bacterial distributions under the pH gradient and those under flow were measured in double-layer flow based microfluidic device and T-shaped cylinders. Migration of aerobic bacteria from the duodenum into pancreas is counteracted by bile and pancreatic juice flow but facilitated by pH-taxis from acidic duodenum fluid toward more favorable slightly alkaline pH in pancreatic juice. Additionally, the reduced flow velocity in cancer patients, due to compressed pancreatic duct by solid tumor, facilitates migration. Moreover, measured distribution of GFP E. coli under the pH gradient in a microfluidic device validated pH-tactic behaviors. Furthermore, Pseudomonas fluorescens in hydrochloride solution, but not in bicarbonate solution, migrated upstream against bicarbonate flow of > 20 μm/s, with an advancement at approximately 50 μm/s.
Collapse
|
12
|
Brandi G, Turroni S, McAllister F, Frega G. The Human Microbiomes in Pancreatic Cancer: Towards Evidence-Based Manipulation Strategies? Int J Mol Sci 2021; 22:9914. [PMID: 34576078 PMCID: PMC8471697 DOI: 10.3390/ijms22189914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Recent pieces of evidence have emerged on the relevance of microorganisms in modulating responses to anticancer treatments and reshaping the tumor-immune microenvironment. On the one hand, many studies have addressed the role of the gut microbiota, providing interesting correlative findings with respect to etiopathogenesis and treatment responses. On the other hand, intra-tumoral bacteria are being recognized as intrinsic and essential components of the cancer microenvironment, able to promote a plethora of tumor-related aspects from cancer growth to resistance to chemotherapy. These elements will be probably more and more valuable in the coming years in early diagnosis and risk stratification. Furthermore, microbial-targeted intervention strategies may be used as adjuvants to current therapies to improve therapeutic responses and overall survival. This review focuses on new insights and therapeutic approaches that are dawning against pancreatic cancer: a neoplasm that arises in a central metabolic "hub" interfaced between the gut and the host.
Collapse
Affiliation(s)
- Giovanni Brandi
- Department of Experimental, Diagnostic and Specialty Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Florencia McAllister
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Giorgio Frega
- Department of Experimental, Diagnostic and Specialty Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
13
|
Knippel RJ, Drewes JL, Sears CL. The Cancer Microbiome: Recent Highlights and Knowledge Gaps. Cancer Discov 2021; 11:2378-2395. [PMID: 34400408 DOI: 10.1158/2159-8290.cd-21-0324] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023]
Abstract
Knowledge of the human microbiome, which is likely a critical factor in the initiation, progression, and prognosis of multiple forms of cancer, is rapidly expanding. In this review, we focus on recent investigations to discern putative, causative microbial species and the microbiome composition and structure currently associated with procarcinogenesis and tumorigenesis at select body sites. We specifically highlight forms of cancer, gastrointestinal and nongastrointestinal, that have significant bacterial associations and well-defined experimental evidence with the aim of generating directions for future experimental and translational investigations to develop a clearer understanding of the multifaceted mechanisms by which microbiota affect cancer formation. SIGNIFICANCE: Emerging and, for some cancers, strong experimental and translational data support the contribution of the microbiome to cancer biology and disease progression. Disrupting microbiome features and pathways contributing to cancer may provide new approaches to improving cancer outcomes in patients.
Collapse
Affiliation(s)
- Reece J Knippel
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Julia L Drewes
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cynthia L Sears
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
14
|
Tijeras-Raballand A, Hilmi M, Astorgues-Xerri L, Nicolle R, Bièche I, Neuzillet C. Microbiome and pancreatic ductal adenocarcinoma. Clin Res Hepatol Gastroenterol 2021; 45:101589. [PMID: 33607375 DOI: 10.1016/j.clinre.2020.101589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) incidence and related-deaths are increasing worldwide. PDAC is characterized by poor prognosis due to late diagnosis, high metastatic capacity and resistance to therapy. This is partially due to its specific microenvironment, where the stroma is prominent over tumor cells. Besides the oral and gut microbiota, the intratumor microbiome, i.e. the bacterial and fungal microorganisms present within the tumor, was recently introduced as a new partner of the tumor microenvironment of PDAC modulating pancreatic carcinogenesis, intratumor immune infiltrates, and response to chemotherapy. In this review, we propose an overview of current knowledge about the roles of bacteria and fungi in PDAC development and biology, and discuss potential therapeutic implications.
Collapse
Affiliation(s)
| | - Marc Hilmi
- OncoMEGA, Lamorlaye, France; Medical Oncology Department, Curie Institute, Versailles Saint-Quentin University (UVQ), Paris Saclay University, Saint-Cloud, France
| | | | - Rémy Nicolle
- OncoMEGA, Lamorlaye, France; Carte d'Identité des Tumeurs (Tumors Identity Card), La Ligue Contre le Cancer, Paris, France
| | - Ivan Bièche
- Pharmacogenomic Unit, Genetic Department, Curie Institute, Paris, France
| | - Cindy Neuzillet
- OncoMEGA, Lamorlaye, France; Medical Oncology Department, Curie Institute, Versailles Saint-Quentin University (UVQ), Paris Saclay University, Saint-Cloud, France.
| |
Collapse
|