1
|
Jiao K, Cheng N, Huan X, Zhang J, Ding Y, Luan X, Liu L, Wang X, Zhu B, Du K, Fan J, Gao M, Xia X, Wang N, Wang T, Xi J, Luo S, Lu J, Zhao C, Yue D, Zhu W. Pseudoexon activation by deep intronic variation in GNE myopathy with thrombocytopenia. Muscle Nerve 2024; 69:708-718. [PMID: 38558464 DOI: 10.1002/mus.28092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION/AIMS GNE myopathy is a rare autosomal recessive disorder caused by pathogenic variants in the GNE gene, which is essential for the sialic acid biosynthesis pathway. Although over 300 GNE variants have been reported, some patients remain undiagnosed with monoallelic pathogenic variants. This study aims to analyze the entire GNE genomic region to identify novel pathogenic variants. METHODS Patients with clinically compatible GNE myopathy and monoallelic pathogenic variants in the GNE gene were enrolled. The other GNE pathogenic variant was verified using comprehensive methods including exon 2 quantitative polymerase chain reaction and nanopore long-read single-molecule sequencing (LRS). RESULTS A deep intronic GNE variant, c.862+870C>T, was identified in nine patients from eight unrelated families. This variant generates a cryptic splice site, resulting in the activation of a novel pseudoexon between exons 5 and 6. It results in the insertion of an extra 146 nucleotides into the messengerRNA (mRNA), which is predicted to result in a truncated humanGNE1(hGNE1) protein. Peanut agglutinin(PNA) lectin staining of muscle tissues showed reduced sialylation of mucin O-glycans on sarcolemmal glycoproteins. Notably, a third of patients with the c.862+870C>T variant exhibited thrombocytopenia. A common core haplotype harboring the deep intronic GNE variant was found in all these patients. DISCUSSION The transcript with pseudoexon activation potentially affects sialic acid biosynthesis via nonsense-mediated mRNA decay, or resulting in a truncated hGNE1 protein, which interferes with normal enzyme function. LRS is expected to be more frequently incorporated in genetic analysis given its efficacy in detecting hard-to-find pathogenic variants.
Collapse
Affiliation(s)
- Kexin Jiao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Nachuan Cheng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Xiao Huan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Jialong Zhang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Yu Ding
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xinghua Luan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - LingChun Liu
- The First People's Hospital of Yunnan Province, Kunming, China
| | - Xilu Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Bochen Zhu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Kunzhao Du
- Jinshan Hospital Center for Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jiale Fan
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, The Institutes of Brain Science, Shanghai, China
| | - Mingshi Gao
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xingyu Xia
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Ningning Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Tao Wang
- Department of Anesthesiology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jianying Xi
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Sushan Luo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Jiahong Lu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Dongyue Yue
- Department of Neurology, Jing'an District Center Hospital of Shanghai, Shanghai, China
| | - Wenhua Zhu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| |
Collapse
|
2
|
Wei XJ, Sun H, Miao J, Qiu RQ, Jiang ZZ, Ma ZW, Sun W, Yu XF. Clinical-pathological features and muscle imaging findings in 36 Chinese patients with rimmed vacuolar myopathies: case series study and review of literature. Front Neurol 2023; 14:1152738. [PMID: 37188302 PMCID: PMC10175607 DOI: 10.3389/fneur.2023.1152738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction Rimmed vacuolar myopathies (RVMs) are a group of genetically heterogeneous diseases that share histopathological characteristics on muscle biopsy, including the aberrant accumulation of autophagic vacuoles. However, the presence of non-coding sequences and structural mutations, some of which remain undetectable, confound the identification of pathogenic mutations responsible for RVMs. Therefore, we assessed the clinical profiles and muscle magnetic resonance imaging (MRI) changes in 36 Chinese patients with RVMs, emphasizing the role of muscle MRI in disease identification and differential diagnosis to propose a comprehensive literature-based imaging pattern to facilitate improved diagnostic workup. Methods All patients presented with rimmed vacuoles with varying degrees of muscular dystrophic changes and underwent a comprehensive evaluation using clinical, morphological, muscle MRI and molecular genetic analysis. We assessed muscle changes in the Chinese RVMs and provided an overview of the RVMs, focusing on the patterns of muscle involvement on MRI. Results A total of 36 patients, including 24 with confirmed distal myopathy and 12 with limb-girdle phenotype, had autophagic vacuoles with RVMs. Hierarchical clustering of patients according to the predominant effect of the distal or proximal lower limbs revealed that most patients with RVMs could be distinguished. GNE myopathy was the most prevalent form of RVMs observed in this study. Moreover, MRI helped identify the causative genes in some diseases (e.g., desminopathy and hereditary myopathy with early respiratory failure) and confirmed the pathogenicity of a novel mutation (e.g., adult-onset proximal rimmed vacuolar titinopathy) detected using next-generation sequencing. Discussion Collectively, our findings expand our knowledge of the genetic spectrum of RVMs in China and suggest that muscle imaging should be an integral part of assisting genetic testing and avoiding misdiagnosis in the diagnostic workup of RVM.
Collapse
|
3
|
Savarese M, Sarparanta J, Vihola A, Jonson PH, Johari M, Rusanen S, Hackman P, Udd B. Panorama of the distal myopathies. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:245-265. [PMID: 33458580 PMCID: PMC7783427 DOI: 10.36185/2532-1900-028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Distal myopathies are genetic primary muscle disorders with a prominent weakness at onset in hands and/or feet. The age of onset (from early childhood to adulthood), the distribution of muscle weakness (upper versus lower limbs) and the histological findings (ranging from nonspecific myopathic changes to myofibrillar disarrays and rimmed vacuoles) are extremely variable. However, despite being characterized by a wide clinical and genetic heterogeneity, the distal myopathies are a category of muscular dystrophies: genetic diseases with progressive loss of muscle fibers. Myopathic congenital arthrogryposis is also a form of distal myopathy usually caused by focal amyoplasia. Massive parallel sequencing has further expanded the long list of genes associated with a distal myopathy, and contributed identifying as distal myopathy-causative rare variants in genes more often related with other skeletal or cardiac muscle diseases. Currently, almost 20 genes (ACTN2, CAV3, CRYAB, DNAJB6, DNM2, FLNC, HNRNPA1, HSPB8, KHLH9, LDB3, MATR3, MB, MYOT, PLIN4, TIA1, VCP, NOTCH2NLC, LRP12, GIPS1) have been associated with an autosomal dominant form of distal myopathy. Pathogenic changes in four genes (ADSSL, ANO5, DYSF, GNE) cause an autosomal recessive form; and disease-causing variants in five genes (DES, MYH7, NEB, RYR1 and TTN) result either in a dominant or in a recessive distal myopathy. Finally, a digenic mechanism, underlying a Welander-like form of distal myopathy, has been recently elucidated. Rare pathogenic mutations in SQSTM1, previously identified with a bone disease (Paget disease), unexpectedly cause a distal myopathy when combined with a common polymorphism in TIA1. The present review aims at describing the genetic basis of distal myopathy and at summarizing the clinical features of the different forms described so far.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Jaakko Sarparanta
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Anna Vihola
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Neuromuscular Research Center, Department of Genetics, Fimlab Laboratories, Tampere, Finland
| | - Per Harald Jonson
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Salla Rusanen
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|