1
|
Kim YS, Park Y, Kim Y, Son HE, Rhee J, Pyun CW, Park C, Kim H. Ameliorative Effects of HT074-Inula and Paeonia Extract Mixture on Acute Reflux Esophagitis in Rats via Antioxidative Activity. Antioxidants (Basel) 2024; 13:891. [PMID: 39199137 PMCID: PMC11352064 DOI: 10.3390/antiox13080891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
HT074, a multiherbal mixture containing extracts from Inula britannica flowers and Paeonia lactiflora roots, is used in Korean medicine for gastric disorders. This study investigated the protective mechanisms of HT074 against acute reflux esophagitis (RE) in rats. Nitric oxide (NO) production and mRNA expression of antioxidant-related genes (Nrf2, HO-1, SOD, CAT, and GPx2) were evaluated in LPS-induced RAW 264.7 cells. Gastroesophageal reflux (GER) was induced in rats, followed by HT074 (100, 300 mg/kg) or ranitidine (50 mg/kg) administration. Esophageal damage and histological changes were assessed. Gastric pH and protein expression levels of Nrf2, HO-1, SOD, CAT, and GPx-1/2 were measured. HT074 pretreatment reduced NO production and increased the expression of HO-1, CAT, and GPx2 in LPS-induced RAW 264.7 cells. In GER-induced rats, HT074 significantly decreased esophageal lesions and increased the expression of HO-1, SOD, GPx-1/2, and Nrf2. HT074 did not affect gastric pH. These findings suggest that HT074 protects against GER-induced esophagitis by inhibiting NO production and enhancing antioxidant activity. Therefore, HT074 could be a promising therapeutic agent for GER disease.
Collapse
Affiliation(s)
- Young-Sik Kim
- Department of Herbology, College of Korean Medicine, Woosuk University, Jeonju 54986, Republic of Korea; (Y.-S.K.); (Y.K.); (H.-E.S.); (J.R.)
| | - Yeonjin Park
- Department of Herbal Pharmacology, College of Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (Y.P.); (C.P.)
| | - Yongbin Kim
- Department of Herbology, College of Korean Medicine, Woosuk University, Jeonju 54986, Republic of Korea; (Y.-S.K.); (Y.K.); (H.-E.S.); (J.R.)
| | - Hyo-Eun Son
- Department of Herbology, College of Korean Medicine, Woosuk University, Jeonju 54986, Republic of Korea; (Y.-S.K.); (Y.K.); (H.-E.S.); (J.R.)
| | - Jinhui Rhee
- Department of Herbology, College of Korean Medicine, Woosuk University, Jeonju 54986, Republic of Korea; (Y.-S.K.); (Y.K.); (H.-E.S.); (J.R.)
| | - Chang-Won Pyun
- NEUMED R&BD Institute, NeuMed Inc., 88 Imun-ro, Dongdaemun-gu, Seoul 02440, Republic of Korea;
| | - Chanoh Park
- Department of Herbal Pharmacology, College of Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (Y.P.); (C.P.)
| | - Hocheol Kim
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Novel Application of Eupatilin for Effectively Attenuating Cisplatin-Induced Auditory Hair Cell Death via Mitochondrial Apoptosis Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1090034. [PMID: 35082962 PMCID: PMC8786471 DOI: 10.1155/2022/1090034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022]
Abstract
Eupatilin (5,7-dihydroxy-3′,4′,6-trimethoxyflavone) is a pharmacologically active flavone that has been isolated from a variety of medicinal plants and possesses a number of pharmacological properties. This study evaluates the antioxidant and antiapoptotic effects of eupatilin on cisplatin-induced ototoxicity using in vitro and in vivo models including HEI-OC1 cells, cochlear hair cells, and zebrafish. Employing a CCK8 assay and Annexin V-FITC/PI double staining, we found that eupatilin significantly alleviated cisplatin-induced apoptosis and increased hair cell viability. The level of reactive oxygen species (ROS) was evaluated by CellROX green and MitoSOX Red staining. The results showed that eupatilin possesses antioxidant activity. MitoTracker Red staining indicated that eupatilin remarkably decreased mitochondrial damage. Furthermore, we demonstrated that eupatilin protects hair cells from cisplatin-induced damage. Mechanistic studies in cisplatin-induced HEI-OC1 cells revealed that eupatilin promoted Bcl-2 expression, downregulated Bax expression, reversed the increase in caspase-3 and PARP activity, and reduced the expression of phosphorylated p38 and JNK. Our data suggest a novel role for eupatilin as a protective agent against ototoxic drug-induced hair cell apoptosis by inhibiting ROS generation and modulating mitochondrial-related apoptosis.
Collapse
|