1
|
Enomoto H, Nishimura T, Fukunushi S, Shiomi H, Iijima H. Determination of the Possible Target Genes of Hepatoma-derived Growth Factor in Hepatoma Cells. In Vivo 2023; 37:1975-1979. [PMID: 37652516 PMCID: PMC10500524 DOI: 10.21873/invivo.13294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND/AIM We identified a new growth factor, hepatoma-derived growth factor (HDGF), which is a presumed growth-stimulating factor of hepatocellular carcinoma (HCC). Recently, we identified two microRNAs (miR-6072 and miR-3137) induced by HDGF, which were also found to be associated with the prognosis of HCC patients. This study aimed to identify the target genes of these HDGF-related microRNAs. MATERIALS AND METHODS A public database was searched for candidate target genes of HDGF-related microRNAs. Using the microarray system, the genes whose expression changed in response to HDGF administration were determined. Finally, a public cancer genomics database was searched for genes that were induced by HDGF and associated with the prognosis of HCC. RESULTS A total of 1,132 genes were identified as common target genes of the 2 HDGF-related microRNAs. Among these genes, a microarray system showed that the expression of 6 genes was increased (≥1.5-fold) or decreased (≤0.67-fold) after HDGF administration. Using a cancer genomics database, two of the six genes were found to be related to the prognosis of HCC. A high expression of alkylglycerone phosphate synthase (AGPS) was significantly associated with a poor survival (p=0.0025, 0.0063 and 0.0081 for the 1-, 3- and 5-year survival, respectively). A high expression of the shroom family member 4 (SHROOM4) gene was found to be significantly associated with a better survival (p=0.003, 0.0006 and 0.0006 for the 1-, 3- and 5-year survival, respectively). CONCLUSION This study identified potential target genes of HDGF-related microRNAs that were associated with the prognosis of HCC.
Collapse
Affiliation(s)
- Hirayuki Enomoto
- Division of Hepatobiliary and Pancreatic Diseases, Department of Gastroenterology, Hyogo Medical University, Nishinomiya, Japan
| | - Takashi Nishimura
- Division of Hepatobiliary and Pancreatic Diseases, Department of Gastroenterology, Hyogo Medical University, Nishinomiya, Japan
| | - Shinya Fukunushi
- Division of Hepatobiliary and Pancreatic Diseases, Department of Gastroenterology, Hyogo Medical University, Nishinomiya, Japan
| | - Hideyuki Shiomi
- Division of Hepatobiliary and Pancreatic Diseases, Department of Gastroenterology, Hyogo Medical University, Nishinomiya, Japan
| | - Hiroko Iijima
- Division of Hepatobiliary and Pancreatic Diseases, Department of Gastroenterology, Hyogo Medical University, Nishinomiya, Japan
| |
Collapse
|
2
|
Han S, Tian Z, Tian H, Han H, Zhao J, Jiao Y, Wang C, Hao H, Wang S, Fu J, Xue D, Sun H, Li P. HDGF promotes gefitinib resistance by activating the PI3K/AKT and MEK/ERK signaling pathways in non-small cell lung cancer. Cell Death Discov 2023; 9:181. [PMID: 37301856 DOI: 10.1038/s41420-023-01476-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Hepatoma-derived growth factor (HDGF) expression is associated with poor prognosis in non-small cell lung cancer (NSCLC); however, whether HDGF affects gefitinib resistance in NSCLC remains unknown. This study aimed to explore the role of HDGF in gefitinib resistance in NSCLC and to discover the underlying mechanisms. Stable HDGF knockout or overexpression cell lines were generated to perform experiments in vitro and in vivo. HDGF concentrations were determined using an ELISA kit. HDGF overexpression exacerbated the malignant phenotype of NSCLC cells, while HDGF knockdown exerted the opposite effects. Furthermore, PC-9 cells, which were initially gefitinib-sensitive, became resistant to gefitinib treatment after HDGF overexpression, whereas HDGF knockdown enhanced gefitinib sensitivity in H1975 cells, which were initially gefitinib-resistant. Higher levels of HDGF in plasma or tumor tissue also indicated gefitinib resistance. The effects of HDGF on promoting the gefitinib resistance were largely attenuated by MK2206 (Akt inhibitor) or U0126 (ERK inhibitor). Mechanistically, gefitinib treatment provoked HDGF expression and activated the Akt and ERK pathways, which were independent of EGFR phosphorylation. In summary, HDGF contributes to gefitinib resistance by activating the Akt and ERK signaling pathways. The higher HDGF levels may predict poor efficacy for TKI treatment, thus it has the potential to serve as a new target for overcoming tyrosine kinase inhibitor resistance in combating NSCLC.
Collapse
Affiliation(s)
- Shuyan Han
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Zhihua Tian
- Central Laboratory, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Huifang Tian
- Central Laboratory, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Haibo Han
- The Tissue Bank, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jun Zhao
- Department of Thoracic Medical Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yanna Jiao
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Chunli Wang
- Department of Oncology, Infectious Disease Hospital of Heilongjiang Province, Harbin, 150030, China
| | - Huifeng Hao
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Shan Wang
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jialei Fu
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Dong Xue
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Hong Sun
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Pingping Li
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
3
|
Ahn SS, Kim HM, Park Y. Association of serum hepatoma-derived growth factor levels with disease activity in rheumatoid arthritis: A pilot study. J Clin Lab Anal 2022; 36:e24474. [PMID: 35500218 PMCID: PMC9169164 DOI: 10.1002/jcla.24474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 11/09/2022] Open
Abstract
Background Hepatoma‐derived growth factor (HDGF) is reported to play an important role in tumorigenesis and cancer progression. However, growing evidence indicates its participation in immune system activation. This study analyzed the relationship among serum HDGF levels, disease activity, and laboratory markers in patients with rheumatoid arthritis (RA). Methods Blood samples from 165 patients with RA, 42 with osteoarthritis (OA), and 28 healthy controls, were used to evaluate the serum HDGF levels. Correlations of serum HDGF levels with age, 28‐joint count disease activity score (DAS28), and laboratory findings were assessed by Pearson correlation and receiver operator characteristic (ROC) curve analyses to obtain HDGF optimal cutoffs according to the disease status. Immunohistochemical staining was performed on the knee synovial tissue samples from patients with RA and OA (n = 10 each) to investigate HDGF joint expression. Results Serum HDGF levels were significantly correlated with DAS28 erythrocyte sedimentation rate (r = 0.412, p < 0.001) and C‐reactive protein values (r = 0.376, p < 0.001). The optimal cutoffs of serum HDGF levels from the ROC analysis were 5.79 and 5.14 for the differentiation of active/inactive disease and remission/non‐remission, respectively. The ideal cutoff of serum HDGF levels to differentiate RA and OA was determined as 5.47. Serial serum HDGF level analyses in 21 patients with RA revealed that serum HDGF levels significantly decreased after improvement in disease activity (p = 0.046). HDGF expression was not observed in the synovial tissues of the patients with RA and OA. Conclusion Serum HDGF level could be a potential laboratory biomarker for the severity of RA.
Collapse
Affiliation(s)
- Sung Soo Ahn
- Division of Rheumatology, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | - Hye Min Kim
- Department of Pathology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | - Younhee Park
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|