Xu P, Song J, Fan W, Zhang Y, Guan Y, Ni C, Wu M, Mu J. Impact of whole-body vibration training on ankle joint proprioception and balance in stroke patients: a prospective cohort study.
BMC Musculoskelet Disord 2024;
25:768. [PMID:
39354501 PMCID:
PMC11446111 DOI:
10.1186/s12891-024-07906-z]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND
Although whole-body vibration (WBV) training is acknowledged for its benefits in enhancing motor functions across several neurological disorders, its precise influence on ankle joint proprioception and balance in stroke patients is still not well understood. This research seeks to assess the impact of WBV training on ankle joint proprioception and balance in stroke patients, thereby filling this important research void.
METHODS
In this prospective cohort study, thirty-five stroke patients were randomly assigned to either the WBV group (n = 17) or a control group (n = 18) using a random number table method. The control group received daily general rehabilitation for four weeks, while the WBV group received an additional 30 min of WBV training each day with the Trunsan S110 Vibration Training System. Blinded outcome assessments were conducted at baseline and post-treatment, utilizing the Berg balance scale (BBS), Functional reach test (FRT), Romberg test length (RTL) and area (RTA), and completion rates of ankle joint dorsiflexion-plantar flexion (DP) and inversion-eversion (IE) tests. Follow-up assessments were performed after four weeks of intervention, focusing on RTL, RTA, DP, and IE as primary outcomes.
RESULTS
Analysis of intra-group changes from baseline to post-treatment revealed significant improvements across the BBS, FRT, RTL, RTA, and DP and IE assessments (p < 0.001). Notably, the WBV group showed significant enhancements compared to the control group in DP and IE (p < 0.001 and p < 0.05, respectively), with mean values increasing from 13.556 to 16.765 (23.7%) and from 5.944 to 8.118 (36.6%), respectively. However, WBV did not provide additional benefits over the control treatment for balance recovery parameters such as BBS, FRT, RTL, and RTA (p > 0.05).
CONCLUSIONS
This study demonstrates that WBV therapy is equally effective as conventional methods in enhancing proprioception and balance in stroke patients, but it does not provide additional benefits for balance recovery. WBV significantly improves proprioceptive functions, particularly in DP and IE parameters. However, it does not surpass traditional rehabilitation methods in terms of balance recovery. These findings indicate that WBV should be incorporated into stroke rehabilitation primarily to enhance proprioception rather than to optimize balance recovery.
TRIAL REGISTRATION
This study was retrospectively registered in the ISRCTN Registry on 29/07/2024 ( https://www.isrctn.com/ , ISRCTN64602845).
Collapse