1
|
Li J, Zou L, Ma H, Zhao J, Wang C, Li J, Hu G, Yang H, Wang B, Xu D, Xia Y, Jiang Y, Jiang X, Li N. Interpretable machine learning based on CT-derived extracellular volume fraction to predict pathological grading of hepatocellular carcinoma. Abdom Radiol (NY) 2024; 49:3383-3396. [PMID: 38703190 DOI: 10.1007/s00261-024-04313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE To develop a non-invasive auxiliary assessment method based on CT-derived extracellular volume (ECV) to predict the pathological grading (PG) of hepatocellular carcinoma (HCC). METHODS The study retrospectively analyzed 238 patients who underwent HCC resection surgery between January 2013 and April 2023. Six machine learning algorithms were employed to construct predictive models for HCC PG: logistic regression, extreme gradient boosting, Light Gradient Boosting Machine (LightGBM), random forest, adaptive boosting, and Gaussian naive Bayes. Model performance was evaluated using receiver operating characteristic curve analysis, including area under the curve (AUC), sensitivity, specificity, accuracy, positive predictive value, negative predictive value, and F1 score. Calibration plots were used for visual evaluation of model calibration. Clinical decision curve analysis was performed to assess potential clinical utility by calculating net benefit. RESULTS 166 patients from Hospital A were allocated to the training set, while 72 patients from Hospital B (constituting 30.25% of the total sample) were assigned to the test set. The model achieved an AUC of 1.000 (95%CI: 1.000-1.000) in the training set and 0.927 (95%CI: 0.837-0.999) in the validation set, respectively. Ultimately, the model achieved an AUC of 0.909 (95%CI: 0.837-0.980) in the test set, with an accuracy of 0.778, sensitivity of 0.906, specificity of 0.789, negative predictive value of 0.556, and F1 score of 0.908. CONCLUSION This study successfully developed and validated a non-invasive auxiliary assessment method based on CT-derived ECV to predict the HCC PG, providing important supplementary information for clinical decision-making.
Collapse
Affiliation(s)
- Jie Li
- Department of Radiology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, China
| | - Linxuan Zou
- Department of Radiology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, China
| | - Heng Ma
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
| | - Jifu Zhao
- Department of Radiology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, China
| | - Chengyan Wang
- Department of Radiology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, China
| | - Jun Li
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, China
| | - Guangchao Hu
- School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Laishan District, Yantai, 264003, China
| | - Haoran Yang
- School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Laishan District, Yantai, 264003, China
| | - Beizhong Wang
- Department of Radiology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, China
| | - Donghao Xu
- School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Laishan District, Yantai, 264003, China
| | - Yuanhao Xia
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
- School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Laishan District, Yantai, 264003, China
| | - Yi Jiang
- Department of Vascular Interventional Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, China
| | - Xingyue Jiang
- Department of Radiology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, China.
| | - Naixuan Li
- Department of Vascular Interventional Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, China.
| |
Collapse
|
2
|
Brancato V, Cerrone M, Garbino N, Salvatore M, Cavaliere C. Current status of magnetic resonance imaging radiomics in hepatocellular carcinoma: A quantitative review with Radiomics Quality Score. World J Gastroenterol 2024; 30:381-417. [PMID: 38313230 PMCID: PMC10835534 DOI: 10.3748/wjg.v30.i4.381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Radiomics is a promising tool that may increase the value of magnetic resonance imaging (MRI) for different tasks related to the management of patients with hepatocellular carcinoma (HCC). However, its implementation in clinical practice is still far, with many issues related to the methodological quality of radiomic studies. AIM To systematically review the current status of MRI radiomic studies concerning HCC using the Radiomics Quality Score (RQS). METHODS A systematic literature search of PubMed, Google Scholar, and Web of Science databases was performed to identify original articles focusing on the use of MRI radiomics for HCC management published between 2017 and 2023. The methodological quality of radiomic studies was assessed using the RQS tool. Spearman's correlation (ρ) analysis was performed to explore if RQS was correlated with journal metrics and characteristics of the studies. The level of statistical signi-ficance was set at P < 0.05. RESULTS One hundred and twenty-seven articles were included, of which 43 focused on HCC prognosis, 39 on prediction of pathological findings, 16 on prediction of the expression of molecular markers outcomes, 18 had a diagnostic purpose, and 11 had multiple purposes. The mean RQS was 8 ± 6.22, and the corresponding percentage was 24.15% ± 15.25% (ranging from 0.0% to 58.33%). RQS was positively correlated with journal impact factor (IF; ρ = 0.36, P = 2.98 × 10-5), 5-years IF (ρ = 0.33, P = 1.56 × 10-4), number of patients included in the study (ρ = 0.51, P < 9.37 × 10-10) and number of radiomics features extracted in the study (ρ = 0.59, P < 4.59 × 10-13), and time of publication (ρ = -0.23, P < 0.0072). CONCLUSION Although MRI radiomics in HCC represents a promising tool to develop adequate personalized treatment as a noninvasive approach in HCC patients, our study revealed that studies in this field still lack the quality required to allow its introduction into clinical practice.
Collapse
Affiliation(s)
- Valentina Brancato
- Department of Information Technology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Marco Cerrone
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Nunzia Garbino
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Marco Salvatore
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Carlo Cavaliere
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| |
Collapse
|
3
|
Gao J, Bai Y, Miao F, Huang X, Schwaiger M, Rominger A, Li B, Zhu H, Lin X, Shi K. Prediction of synchronous distant metastasis of primary pancreatic ductal adenocarcinoma using the radiomics features derived from 18F-FDG PET and MRI. Clin Radiol 2023; 78:746-754. [PMID: 37487840 DOI: 10.1016/j.crad.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 07/26/2023]
Abstract
AIM To explore the potential of the joint radiomics analysis of positron-emission tomography (PET) and magnetic resonance imaging (MRI) of primary tumours for predicting the risk of synchronous distant metastasis (SDM) in patients with pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS 18F-FDG PET and MRI images of PDAC patients from January 2011 to December 2020 were collected retrospectively. Patients (n=66) who received 18F-FDG PET/CT and MRI were included in a development group. Patients (n=25) scanned with hybrid PET/MRI were incorporated in an external test group. A radiomics signature was constructed using the least absolute shrinkage and selection operator algorithm to select PET-MRI radiomics features of primary PDAC tumours. A radiomics nomogram was developed by combining the radiomics signature and important clinical indicators using univariate and multivariate analysis to assess patients' metastasis risk. The nomogram was verified with the employment of an external test group. RESULTS Regarding the development cohort, the radiomics nomogram was found to be better for predicting the risk of distant metastasis (area under the curve [AUC]: 0.93, sensitivity: 87%, specificity: 85%) than the clinical model (AUC: 0.70, p<0.001; sensitivity:70%, specificity: 65%) and the radiomics signature (AUC: 0.89, p>0.05; sensitivity: 65%, specificity:100%). Concerning the external test cohort, the radiomics nomogram yielded an AUC of 0.85. CONCLUSION PET-MRI based radiomics analysis exhibited effective prediction of the risk of SDM for preoperative PDAC patients and may offer complementary information and provide hints for cancer staging.
Collapse
Affiliation(s)
- J Gao
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Bai
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - F Miao
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - X Huang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - M Schwaiger
- Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - A Rominger
- Department of Nuclear Medicine, University of Bern, Switzerland
| | - B Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - H Zhu
- Department of Diagnostic Radiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - X Lin
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - K Shi
- Department of Nuclear Medicine, University of Bern, Switzerland; Department of Informatics, Technical University of Munich, Germany
| |
Collapse
|
4
|
Wang Q, Wang A, Wu X, Hu X, Bai G, Fan Y, Stål P, Brismar TB. Radiomics models for preoperative prediction of the histopathological grade of hepatocellular carcinoma: A systematic review and radiomics quality score assessment. Eur J Radiol 2023; 166:111015. [PMID: 37541183 DOI: 10.1016/j.ejrad.2023.111015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
OBJECTIVE To systematically review the efficacy of radiomics models derived from computed tomography (CT) or magnetic resonance imaging (MRI) in preoperative prediction of the histopathological grade of hepatocellular carcinoma (HCC). METHODS Systematic literature search was performed at databases of PubMed, Web of Science, Embase, and Cochrane Library up to 30 December 2022. Studies that developed a radiomics model using preoperative CT/MRI for predicting the histopathological grade of HCC were regarded as eligible. A pre-defined table was used to extract the data related to study and patient characteristics, characteristics of radiomics modelling workflow, and the model performance metrics. Radiomics quality score and the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) were applied for research quality evaluation. RESULTS Eleven eligible studies were included in this review, consisting of 2245 patients (range 53-494, median 165). No studies were prospectively designed and only two studies had an external test cohort. Half of the studies (five) used CT images and the other half MRI. The median number of extracted radiomics features was 328 (range: 40-1688), which was reduced to 11 (range: 1-50) after feature selection. The commonly used classifiers were logistic regression and support vector machine (both 4/11). When evaluated on the two external test cohorts, the area under the curve of the radiomics models was 0.70 and 0.77. The median radiomics quality score was 10 (range 2-13), corresponding to 28% (range 6-36%) of the full scale. Most studies showed an unclear risk of bias as evaluated by QUADAS-2. CONCLUSION Radiomics models based on preoperative CT or MRI have the potential to be used as an imaging biomarker for prediction of HCC histopathological grade. However, improved research and reporting quality is required to ensure sufficient reliability and reproducibility prior to implementation into clinical practice.
Collapse
Affiliation(s)
- Qiang Wang
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden; Department of Radiology, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | - Anrong Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Interventional Therapy, People's Hospital of Dianjiang County, Chongqing, China
| | - Xueyun Wu
- Department of General Surgery and Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojun Hu
- Department of General Surgery and Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Guojie Bai
- Department of Radiology, Tianjin Beichen Traditional Chinese Medicine Hospital, Tianjin, China
| | - Yingfang Fan
- Department of General Surgery and Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Per Stål
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Torkel B Brismar
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden; Department of Radiology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
5
|
Nakaura T, Kobayashi N, Yoshida N, Shiraishi K, Uetani H, Nagayama Y, Kidoh M, Hirai T. Update on the Use of Artificial Intelligence in Hepatobiliary MR Imaging. Magn Reson Med Sci 2023; 22:147-156. [PMID: 36697024 PMCID: PMC10086394 DOI: 10.2463/mrms.rev.2022-0102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/08/2022] [Indexed: 01/26/2023] Open
Abstract
The application of machine learning (ML) and deep learning (DL) in radiology has expanded exponentially. In recent years, an extremely large number of studies have reported about the hepatobiliary domain. Its applications range from differential diagnosis to the diagnosis of tumor invasion and prediction of treatment response and prognosis. Moreover, it has been utilized to improve the image quality of DL reconstruction. However, most clinicians are not familiar with ML and DL, and previous studies about these concepts are relatively challenging to understand. In this review article, we aimed to explain the concepts behind ML and DL and to summarize recent achievements in their use in the hepatobiliary region.
Collapse
Affiliation(s)
- Takeshi Nakaura
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Naoki Kobayashi
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Naofumi Yoshida
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Kaori Shiraishi
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Hiroyuki Uetani
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Yasunori Nagayama
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Masafumi Kidoh
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Toshinori Hirai
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| |
Collapse
|
6
|
Jiang C, Cai YQ, Yang JJ, Ma CY, Chen JX, Huang L, Xiang Z, Wu J. Radiomics in the diagnosis and treatment of hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2023:S1499-3872(23)00044-9. [PMID: 37019775 DOI: 10.1016/j.hbpd.2023.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor. At present, early diagnosis of HCC is difficult and therapeutic methods are limited. Radiomics can achieve accurate quantitative evaluation of the lesions without invasion, and has important value in the diagnosis and treatment of HCC. Radiomics features can predict the development of cancer in patients, serve as the basis for risk stratification of HCC patients, and help clinicians distinguish similar diseases, thus improving the diagnostic accuracy. Furthermore, the prediction of the treatment outcomes helps determine the treatment plan. Radiomics is also helpful in predicting the HCC recurrence, disease-free survival and overall survival. This review summarized the role of radiomics in the diagnosis, treatment and prognosis of HCC.
Collapse
Affiliation(s)
- Chun Jiang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Yi-Qi Cai
- Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Jia-Jia Yang
- Department of Infection Management, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Can-Yu Ma
- Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Jia-Xi Chen
- Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Lan Huang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China.
| |
Collapse
|
7
|
Wei J, Jiang H, Zhou Y, Tian J, Furtado FS, Catalano OA. Radiomics: A radiological evidence-based artificial intelligence technique to facilitate personalized precision medicine in hepatocellular carcinoma. Dig Liver Dis 2023:S1590-8658(22)00863-5. [PMID: 36641292 DOI: 10.1016/j.dld.2022.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/16/2023]
Abstract
The high postoperative recurrence rates in hepatocellular carcinoma (HCC) remain a major hurdle in its management. Appropriate staging and treatment selection may alleviate the extent of fatal recurrence. However, effective methods to preoperatively evaluate pathophysiologic and molecular characteristics of HCC are lacking. Imaging plays a central role in HCC diagnosis and stratification due to the non-invasive diagnostic criteria. Vast and crucial information is hidden within image data. Other than providing a morphological sketch for lesion diagnosis, imaging could provide new insights to describe the pathophysiological and genetic landscape of HCC. Radiomics aims to facilitate diagnosis and prognosis of HCC using artificial intelligence techniques to harness the immense information contained in medical images. Radiomics produces a set of archetypal and robust imaging features that are correlated to key pathological or molecular biomarkers to preoperatively risk-stratify HCC patients. Inferred with outcome data, comprehensive combination of radiomic, clinical and/or multi-omics data could also improve direct prediction of response to treatment and prognosis. The evolution of radiomics is changing our understanding of personalized precision medicine in HCC management. Herein, we review the key techniques and clinical applications in HCC radiomics and discuss current limitations and future opportunities to improve clinical decision making.
Collapse
Affiliation(s)
- Jingwei Wei
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China.
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR. China
| | - Yu Zhou
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; School of Life Science and Technology, Xidian University, Xi'an, PR. China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, PR. China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR. China.
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States.
| |
Collapse
|
8
|
Brancato V, Garbino N, Salvatore M, Cavaliere C. MRI-Based Radiomic Features Help Identify Lesions and Predict Histopathological Grade of Hepatocellular Carcinoma. Diagnostics (Basel) 2022; 12:diagnostics12051085. [PMID: 35626241 PMCID: PMC9139902 DOI: 10.3390/diagnostics12051085] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/06/2022] [Accepted: 04/23/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver cancer. Radiomics is a promising tool that may increase the value of magnetic resonance imaging (MRI) in the management of HCC. The purpose of our study is to develop an MRI-based radiomics approach to preoperatively detect HCC and predict its histological grade. Thirty-eight HCC patients at staging who underwent axial T2-weighted and dynamic contrast-enhanced MRI (DCE-MRI) were considered. Three-dimensional volumes of interest (VOIs) were manually placed on HCC lesions and normal hepatic tissue (HT) on arterial phase post-contrast images. Radiomic features from T2 images and arterial, portal and tardive post-contrast images from DCE-MRI were extracted by using Pyradiomics. Feature selection was performed using correlation filter, Wilcoxon-rank sum test and mutual information. Predictive models were constructed for HCC differentiation with respect to HT and HCC histopathologic grading used at each step an imbalance-adjusted bootstrap resampling (IABR) on 1000 samples. Promising results were obtained from radiomic prediction models, with best AUCs ranging from 71% to 96%. Radiomics MRI based on T2 and DCE-MRI revealed promising results concerning both HCC detection and grading. It may be a suitable tool for personalized treatment of HCC patients and could also be used to develop new prognostic biomarkers useful for HCC assessment without the need for invasive procedures.
Collapse
|
9
|
Stability of Liver Radiomics across Different 3D ROI Sizes-An MRI In Vivo Study. Tomography 2021; 7:866-876. [PMID: 34941645 PMCID: PMC8706942 DOI: 10.3390/tomography7040073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/20/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
We aimed to evaluate the stability of radiomic features in the liver of healthy individuals across different three-dimensional regions of interest (3D ROI) sizes in T1-weighted (T1w) and T2-weighted (T2w) images from different MR scanners. We retrospectively included 66 examinations of patients without known diseases or pathological imaging findings acquired on three MRI scanners (3 Tesla I: 25 patients, 3 Tesla II: 19 patients, 1.5 Tesla: 22 patients). 3D ROIs of different diameters (10, 20, 30 mm) were drawn on T1w GRE and T2w TSE images into the liver parenchyma (segment V–VIII). We extracted 93 radiomic features from the different ROIs and tested features for significant differences with the Mann–Whitney-U (MWU)-test. The MWU-test revealed significant differences for most second- and higher-order features, indicating a systematic difference dependent on the ROI size. The features mean, median, root mean squared (RMS), 10th percentile, and 90th percentile were not significantly different. We also assessed feature robustness to ROI size variation with overall concordance correlation coefficients (OCCCs). OCCCs across the different ROI-sizes for mean, median, and RMS were excellent (>0.90) in both sequences on all three scanners. These features, therefore, seem robust to ROI-size variation and suitable for radiomic studies of liver MRI.
Collapse
|
10
|
Gong XQ, Tao YY, Wu YK, Liu N, Yu X, Wang R, Zheng J, Liu N, Huang XH, Li JD, Yang G, Wei XQ, Yang L, Zhang XM. Progress of MRI Radiomics in Hepatocellular Carcinoma. Front Oncol 2021; 11:698373. [PMID: 34616673 PMCID: PMC8488263 DOI: 10.3389/fonc.2021.698373] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the sixth most common cancer in the world and the third leading cause of cancer-related death. Although the diagnostic scheme of HCC is currently undergoing refinement, the prognosis of HCC is still not satisfactory. In addition to certain factors, such as tumor size and number and vascular invasion displayed on traditional imaging, some histopathological features and gene expression parameters are also important for the prognosis of HCC patients. However, most parameters are based on postoperative pathological examinations, which cannot help with preoperative decision-making. As a new field, radiomics extracts high-throughput imaging data from different types of images to build models and predict clinical outcomes noninvasively before surgery, rendering it a powerful aid for making personalized treatment decisions preoperatively. Objective This study reviewed the workflow of radiomics and the research progress on magnetic resonance imaging (MRI) radiomics in the diagnosis and treatment of HCC. Methods A literature review was conducted by searching PubMed for search of relevant peer-reviewed articles published from May 2017 to June 2021.The search keywords included HCC, MRI, radiomics, deep learning, artificial intelligence, machine learning, neural network, texture analysis, diagnosis, histopathology, microvascular invasion, surgical resection, radiofrequency, recurrence, relapse, transarterial chemoembolization, targeted therapy, immunotherapy, therapeutic response, and prognosis. Results Radiomics features on MRI can be used as biomarkers to determine the differential diagnosis, histological grade, microvascular invasion status, gene expression status, local and systemic therapeutic responses, and prognosis of HCC patients. Conclusion Radiomics is a promising new imaging method. MRI radiomics has high application value in the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Xue-Qin Gong
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yun-Yun Tao
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yao-Kun Wu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ning Liu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xi Yu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ran Wang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing Zheng
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Nian Liu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiao-Hua Huang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing-Dong Li
- Department of Hepatocellular Surgery, Institute of Hepato-Biliary-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Gang Yang
- Department of Hepatocellular Surgery, Institute of Hepato-Biliary-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiao-Qin Wei
- School of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Lin Yang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiao-Ming Zhang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|