1
|
Yang TF, Li XR, Kong MW. Molecular mechanisms underlying roles of long non-coding RNA small nucleolar RNA host gene 16 in digestive system cancers. World J Gastrointest Oncol 2024; 16:4300-4308. [PMID: 39554746 PMCID: PMC11551640 DOI: 10.4251/wjgo.v16.i11.4300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 10/25/2024] Open
Abstract
This editorial reviews the molecular mechanisms underlying the roles of the long non-coding RNA (lncRNA) small nucleolar RNA host gene 16 (SNHG16) in digestive system cancers based on two recent studies on lncRNAs in digestive system tumors. The first study, by Zhao et al, explored how hBD-1 affects colon cancer, via the lncRNA TCONS_00014506, by inhibiting mTOR and promoting autophagy. The second one, by Li et al, identified the lncRNA prion protein testis specific (PRNT) as a factor in oxaliplatin resistance by sponging ZNF184 to regulate HIPK2 and influence colorectal cancer progression and chemoresistance, suggesting PRNT as a potential therapeutic target for colorectal cancer. Both of these two articles discuss the mechanisms by which lncRNAs contribute to the development and progression of digestive system cancers. As a recent research hotspot, SNHG16 is a typical lncRNA that has been extensively studied for its association with digestive system cancers. The prevailing hypothesis is that SNHG16 participates in the development and progression of digestive system tumors by acting as a competing endogenous RNA, interacting with other proteins, regulating various genes, and affecting downstream target molecules. This review systematically examines the recently reported biological functions, related molecular mechanisms, and potential clinical significance of SNHG16 in various digestive system cancers, and explores the relationship between SNHG16 and digestive system cancers. The findings suggest that SNHG16 may serve as a potential biomarker and therapeutic target for human digestive system cancers.
Collapse
Affiliation(s)
- Ting-Fang Yang
- Department of Oncology, Guiqian International General Hospital, Guiyang 550018, Guizhou Province, China
| | - Xin-Rui Li
- Department of Cardiology, Guiqian International General Hospital, Guiyang 550018, Guizhou Province, China
| | - Mo-Wei Kong
- Department of Cardiology, Guiqian International General Hospital, Guiyang 550018, Guizhou Province, China
| |
Collapse
|
2
|
Zhao L, Kan Y, Wang L, Pan J, Li Y, Zhu H, Yang Z, Xiao L, Fu X, Peng F, Ren H. Roles of long non‑coding RNA SNHG16 in human digestive system cancer (Review). Oncol Rep 2024; 52:106. [PMID: 38940337 PMCID: PMC11234248 DOI: 10.3892/or.2024.8765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/26/2024] [Indexed: 06/29/2024] Open
Abstract
The incidence of tumors in the human digestive system is relatively high, including esophageal cancer, liver cancer, pancreatic cancer, gastric cancer and colorectal cancer. These malignancies arise from a complex interplay of environmental and genetic factors. Among them, long non‑coding RNAs (lncRNAs), which cannot be translated into proteins, serve an important role in the development, progression, migration and prognosis of tumors. Small nucleolar RNA host gene 16 (SNHG16) is a typical lncRNA, and its relationship with digestive system tumors has been widely explored. The prevailing hypothesis suggests that the principal molecular mechanism of SNHG16 in digestive system tumors involves it functioning as a competitive endogenous RNA that interacts with other proteins, regulates various genes and influences a downstream target molecule. The present review summarizes recent research on the relationship between SNHG16 and numerous types of digestive system cancer, encompassing its biological functions, underlying mechanisms and potential clinical implications. Furthermore, it outlines the association between SNHG16 expression and pertinent risk factors, such as smoking, infection and diet. The present review indicated the promise of SNHG16 as a potential biomarker and therapeutic target in human digestive system cancer.
Collapse
Affiliation(s)
- Lujie Zhao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Yuling Kan
- Central Laboratory of Binzhou People's Hospital, Binzhou, Shandong 256600, P.R. China
| | - Lu Wang
- School of Clinical Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Jiquan Pan
- School of Clinical Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Yun Li
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Haiyan Zhu
- Department of Medical Oncology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
- Department of Medical Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Zhongfa Yang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Lin Xiao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Xinhua Fu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Fujun Peng
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
- Weifang Key Laboratory of Collaborative Innovation of Intelligent Diagnosis and Treatment and Molecular Diseases, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Haipeng Ren
- Department of Medical Oncology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
- Department of Medical Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
3
|
Chen L, Shen S, Wang S. LncRNA SNHG16 Knockdown Promotes Diabetic Foot Ulcer Wound Healing via Sponging MiR-31-5p. TOHOKU J EXP MED 2023; 261:283-289. [PMID: 37704416 DOI: 10.1620/tjem.2023.j078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Diabetic foot ulcers are caused by nerve abnormalities and vascular lesions in the distal lower limbs of diabetic patients. However, the causes of diabetic foot ulcers are diverse and the treatment process is complex. Therefore, understanding the pathogenesis of diabetic foot ulcers through lncRNA and formulating effective means are the key to the cure of patients. Tissues were collected from 76 diabetic foot ulcer patients and 50 non-diabetic patients undergoing traumatic amputation. Human dermal fibroblasts (HDFs) were induced by high glucose to obtain diabetic foot ulcer cell model. The lncRNA SNHG16 (SNHG16) and miR-31-5p expression in tissues and cells was detected by real-time quantitative reverse transcription PCR (RT-qPCR). Cell Counting Kit-8 (CCK-8) and Transwell assays were used to evaluate the biological behavior of the cells, and the association between SNHG16 and miR-31-5p was explored by luciferase reporting assay. SNHG16 was distinctly expressed in diabetic foot ulcer tissue samples, while miR-31-5p was decreased. In vitro cell function assays confirmed that the proliferation level was inhibited in the constructed diabetic foot ulcer cell model (HG group), as was the migration and invasion ability. After transfection with silencing SNHG16, the biological behavior of the cells was promoted. Mechanistically, SNHG16 sponge miR-31-5p regulated disease progression. Recovery experiments revealed that miR-31-5p inhibitor counteracted the effect of silencing SNHG16 on cell viability. SNHG16 knockdown may regulate the biological function of cells by targeting miR-31-5p to promote wound healing and ameliorate the condition of diabetic foot ulcer patients.
Collapse
Affiliation(s)
- Lifen Chen
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University
| | - Shuyi Shen
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University
| | - Songyu Wang
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University
| |
Collapse
|
4
|
Zeng LP, Qin YQ, Lu XM, Feng ZB, Fang XL. Identify GADD45G as a potential target of 4-methoxydalbergione in treatment of liver cancer: bioinformatics analysis and in vivo experiment. World J Surg Oncol 2023; 21:324. [PMID: 37833694 PMCID: PMC10571512 DOI: 10.1186/s12957-023-03214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The growth arrest and DNA damage-inducible gene gamma (GADD45G), an important member of GADD45 family, has been connected to the development of certain human cancers. Our previous studies have confirmed that GADD45G expression could be upregulated by 4-methoxydalbergione (4MOD) in liver cancer cells, but its potential pathological role in hepatocellular carcinoma (HCC) has not been fully understood. This study aimed to determine potential role of GADD45G in HCC, and the effects of 4-methoxydalbergione (4MOD) on the regulation of GADD45G expression in vivo were also analyzed. METHODS Publicly available data and in-house immunohistochemistry (IHC) experiments were utilized to explore the expression profiles and clinical significance of GADD45G in HCC samples. Functional enrichment analysis based on GADD45G co-expression genes was used to excavate the molecular mechanism of GADD45G in HCC. We also conducted in vivo experiment on BALB/c nude mice to excavate the inhibitory effect of 4MOD on HCC and to evaluate the differences in the expression of GADD45G in xenograft tissues between the 4MOD-treated and untreated groups. RESULTS GADD45G displayed significant low expression in HCC tissues. Downregulated expression of GADD45G was positively correlated with some high risk factors in HCC patients and predicted worse prognosis of HCC patients. There was a close association of GADD45G mRNA expression and immune cells, including neutrophils, NK cells, CD8 T cells, and macrophages. Co-expressed genes of GADD45G were involved in several pathways including cell cycle, carbon metabolism, and peroxisome. 4MOD could significantly suppress the growth of HCC in vivo, and this inhibitory effect was dependent on the upregulation of GADD45G expression. CONCLUSION GADD45G expression can be used as a new clinical biomarker for HCC and GADD45G may be a potential target for the anti-cancer effect of 4MOD in liver cancer.
Collapse
Affiliation(s)
- Li-Ping Zeng
- Department of Pathology, Hunan University of Medicine, 492 Jinxinan RD, Huaihua, Hunan, 418000, People's Republic of China
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Yu-Qi Qin
- Department of Pathology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, 85 Hedi RD, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Xiao-Min Lu
- Department of Pathology, Hunan University of Medicine, 492 Jinxinan RD, Huaihua, Hunan, 418000, People's Republic of China
| | - Zhen-Bo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China.
| | - Xian-Lei Fang
- Department of Pathology, Hunan University of Medicine, 492 Jinxinan RD, Huaihua, Hunan, 418000, People's Republic of China.
| |
Collapse
|
5
|
Zha B, Luo Y, Kamili M, Zha X. Non-coding RNAs and gastrointestinal cancers prognosis: an umbrella review of systematic reviews and meta-analyses of observational studies. Front Oncol 2023; 13:1193665. [PMID: 37546412 PMCID: PMC10399243 DOI: 10.3389/fonc.2023.1193665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Aim Provide an overview and a systematic evaluation of the evidence quality on the association between non-coding RNAs (ncRNAs) and prognosis value for gastrointestinal cancers (GICs). Methods We searched the literature from three electronic databases: Pubmed, Embase, and Web of science, then carefully screened and extracted the primary information and results from the included articles. We use A measurable systematic review and meta-analysis evaluation tool (AMSTAR2) to evaluate the quality of methodology and then use the Grading of Recommendations Assessment 2, Development and Evaluation guideline (GRADE) make sure the reliability of the meta-analysis. Results Overall, 182 meta-analyses from 58 studies were included in this study. Most of these studies are of low or very low quality. Using the scoring tool, we found that only two meta-analyses were rated as high reliability, and 17 meta-analyses were rated as medium reliability. Conclusions Although ncRNA has good prognostic value in some studies, only a tiny amount of evidence is highly credible at present. More research is needed in the future. PROSPERO registration number CRD42022382296.
Collapse
Affiliation(s)
- Bowen Zha
- The Sixth Clinical Medical College, Capital Medical University, Beijing, China
| | - Yuxi Luo
- The First Clinical Medical College, Capital Medical University, Beijing, China
| | - Muladili Kamili
- The Sixth Clinical Medical College, Capital Medical University, Beijing, China
| | - Xiaqin Zha
- Department of Blood Purification, University Affiliated Second Hospital, Nanchang, China
| |
Collapse
|
6
|
Gao L, Xiong DD, Yang X, Li JD, He RQ, Huang ZG, Lai ZF, Liu LM, Luo JY, Du XF, Zeng JH, Li MF, Li SH, Dang YW, Chen G. The expression characteristics and clinical significance of ACP6, a potential target of nitidine chloride, in hepatocellular carcinoma. BMC Cancer 2022; 22:1244. [PMID: 36456931 PMCID: PMC9714191 DOI: 10.1186/s12885-022-10292-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Acid phosphatase type 6 (ACP6) is a mitochondrial lipid phosphate phosphatase that played a role in regulating lipid metabolism and there is still blank in the clinico-pathological significance and functional roles of ACP6 in human cancers. No investigations have been conducted on ACP6 in hepatocellular carcinoma (HCC) up to date. METHODS Herein, we appraised the clinico-pathological significance of ACP6 in HCC via organizing expression profiles from globally multi-center microarrays and RNA-seq datasets. The molecular basis of ACP6 in HCC was explored through multidimensional analysis. We also carried out in vitro and in vivo experiment on nude mice to investigate the effect of knocking down ACP6 expression on biological functions of HCC cells, and to evaluate the expression variance of ACP6 in xenograft of HCC tissues before and after the treatment of NC. RESULTS ACP6 displayed significant overexpression in HCC samples (standard mean difference (SMD) = 0.69, 95% confidence interval (CI) = 0.56-0.83) and up-regulated ACP6 performed well in screening HCC samples from non-cancer liver samples. ACP6 expression was also remarkably correlated with clinical progression and worse overall survival of HCC patients. There were close links between ACP6 expression and immune cells including B cells, CD8 + T cells and naive CD4 + T cells. Co-expressed genes of ACP6 mainly participated in pathways including cytokine-cytokine receptor interaction, glucocorticoid receptor pathway and NABA proteoglycans. The proliferation and migration rate of HCC cells transfected with ACP6 siRNA was significantly suppressed compared with those transfected with negative control siRNA. ACP6 expression was significantly inhibited by nitidine chloride (NC) in xenograft HCC tissues. CONCLUSIONS ACP6 expression may serve as novel clinical biomarker indicating the clinical development of HCC and ACP6 might be potential target of anti-cancer effect by NC in HCC.
Collapse
Affiliation(s)
- Li Gao
- grid.412594.f0000 0004 1757 2961Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021 People’s Republic of China
| | - Dan-Dan Xiong
- grid.412594.f0000 0004 1757 2961Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021 People’s Republic of China
| | - Xia Yang
- grid.412594.f0000 0004 1757 2961Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021 People’s Republic of China
| | - Jian-Di Li
- grid.412594.f0000 0004 1757 2961Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021 People’s Republic of China
| | - Rong-Quan He
- grid.412594.f0000 0004 1757 2961Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021 People’s Republic of China
| | - Zhi-Guang Huang
- grid.412594.f0000 0004 1757 2961Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021 People’s Republic of China
| | - Ze-Feng Lai
- grid.256607.00000 0004 1798 2653Department of Pharmacy, Guangxi Medical University Cancer Hospital, No.71 Hedi Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021 People’s Republic of China
| | - Li-Min Liu
- grid.256607.00000 0004 1798 2653Department of Toxicology, College of Pharmacy, Guangxi Medical University, No.22 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021 People’s Republic of China
| | - Jia-Yuan Luo
- grid.412594.f0000 0004 1757 2961Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021 People’s Republic of China
| | - Xiu-Fang Du
- grid.412594.f0000 0004 1757 2961Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021 People’s Republic of China
| | - Jiang-Hui Zeng
- grid.256607.00000 0004 1798 2653Department of Clinical Laboratory, The Third Affiliated Hospital of Guangxi Medical University/Nanning Second People’s Hospital, No. 13 Dancun Road, Guangxi Zhuang Autonomous Region, Nanning, 530031 People’s Republic of China
| | - Ming-Fen Li
- grid.411863.90000 0001 0067 3588Laboratory Department, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, No. 89-9 Dongge Road, Guangxi Zhuang Autonomous Region, Nanning, 530021 People’s Republic of China
| | - Sheng-Hua Li
- grid.412594.f0000 0004 1757 2961Department of Urology Surgery, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021 People’s Republic of China
| | - Yi-Wu Dang
- grid.412594.f0000 0004 1757 2961Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021 People’s Republic of China
| | - Gang Chen
- grid.412594.f0000 0004 1757 2961Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021 People’s Republic of China
| |
Collapse
|
7
|
lncRNA–mRNA Expression Patterns in Invasive Pituitary Adenomas: A Microarray Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1380485. [PMID: 35572729 PMCID: PMC9098296 DOI: 10.1155/2022/1380485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022]
Abstract
Background. Long noncoding RNAs (lncRNAs) play important roles in the tumorigenesis and progression of various cancer types; however, their roles in the development of invasive pituitary adenomas (PAs) remain to be investigated. Methods. lncRNA microarray analysis was performed for three invasive and three noninvasive PAs. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed, and coexpression networks between lncRNA and mRNA were constructed. Furthermore, three differentially expressed lncRNAs were selected for validation in PA samples by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). The diagnostic values of these three lncRNAs were further evaluated by a receiver operating characteristic (ROC) curve analysis. Results. A total of 8872 lncRNAs were identified in invasive and paired noninvasive PAs via lncRNA microarray analysis. Among these, the differentially expressed lncRNAs included 81 that were upregulated and 165 that were downregulated. GO enrichment and KEGG pathway analysis showed that these differentially expressed lncRNAs were associated with the posttranslational modifications of proteins. Furthermore, we performed target gene prediction and coexpression analysis. The interrelationships between the significantly differentially expressed lncRNAs and mRNAs were identified. Additionally, three differentially expressed lncRNAs were selected for validation in 41 PA samples by qRT-PCR. The expression levels of FAM182B, LOC105371531, and LOC105375785 were significantly lower in the invasive PAs than in the noninvasive PAs (
). These results were consistent with the microarray data. ROC curve analysis suggested that the expression levels of FAM182B and LOC105375785 could be used to distinguish invasive PAs from noninvasive PAs. Conclusion. Our findings demonstrated the expression patterns of lncRNAs in invasive PAs. FAM182B and LOC105375785 may be involved in the invasiveness of PAs and serve as new candidate biomarkers for the diagnosis of invasive PAs.
Collapse
|