1
|
Thomas DC, Somaiya T, Meira E Cruz M, Kodaganallur Pitchumani P, Ardeshna A, Ravi A, Prabhakar S. The enigma of sleep: Implications of sleep neuroscience for the dental clinician and patient. J Am Dent Assoc 2024; 155:735-746. [PMID: 39007793 DOI: 10.1016/j.adaj.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Sleep disturbances have been shown to result in considerable morbidity and mortality. It is important for dental clinicians to understand the neuroscience behind sleep disorders. TYPES OF STUDIES REVIEWED The authors conducted a search of the literature published from January 1990 through March 2024 of sleep medicine-related articles, with a focus on neuroscience. The authors prioritized articles about the science of sleep as related to dental medicine. RESULTS The authors found a proliferation of articles related to sleep neuroscience along with its implications in dental medicine. The authors also found that the intricate neuroscientific principles of sleep medicine are being investigated robustly. The salient features of, and the differences between, central and obstructive sleep apneas have been elucidated. Sleep genes, such as CRY, PER1, PER2, and CLOCK, and their relationship to cancer and neurodegeneration are also additions to this rapidly developing science. CONCLUSIONS AND PRACTICAL IMPLICATIONS The dental clinician has the potential to be the first to screen patients for possible sleep disorders and make prompt referrals to the appropriate medical professionals. This can be lifesaving as well as minimize potential future morbidity for the patient.
Collapse
|
2
|
Nigro E, D’Arco D, Moscatelli F, Pisani A, Amicone M, Riccio E, Capuano I, Argentino F, Monda M, Messina G, Daniele A, Polito R. Increased Expression of Orexin-A in Patients Affected by Polycystic Kidney Disease. Int J Mol Sci 2024; 25:6243. [PMID: 38892431 PMCID: PMC11172798 DOI: 10.3390/ijms25116243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Orexin-A is a neuropeptide product of the lateral hypothalamus that acts on two receptors, OX1R and OX2R. The orexinergic system is involved in feeding, sleep, and pressure regulation. Recently, orexin-A levels have been found to be negatively correlated with renal function. Here, we analyzed orexin-A levels as well as the incidence of SNPs in the hypocretin neuropeptide precursor (HCRT) and its receptors, HCRTR1 and HCRTR2, in 64 patients affected by autosomal dominant polycystic kidney disease (ADPKD) bearing truncating mutations in the PKD1 or PKD2 genes. Twenty-four healthy volunteers constituted the control group. Serum orexin-A was assessed by ELISA, while the SNPs were investigated through Sanger sequencing. Correlations with the main clinical features of PKD patients were assessed. PKD patients showed impaired renal function (mean eGFR 67.8 ± 34.53) and a statistically higher systolic blood pressure compared with the control group (p < 0.001). Additionally, orexin-A levels in PKD patients were statistically higher than those in healthy controls (477.07 ± 69.42 pg/mL vs. 321.49 ± 78.01 pg/mL; p < 0.001). Furthermore, orexin-A inversely correlated with blood pressure (p = 0.0085), while a direct correlation with eGFR in PKD patients was found. None of the analyzed SNPs showed any association with orexin-A levels in PKD. In conclusion, our data highlights the emerging role of orexin-A in renal physiology and its potential relevance to PKD. Further research is essential to elucidate the intricate mechanisms underlying orexin-A signaling in renal function and its therapeutic implications for PKD and associated cardiovascular complications.
Collapse
Affiliation(s)
- Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy;
- CEINGE-Biotecnologie Avanzate Scarl “Franco Salvatore”, Via G. Salvatore 486, 80145 Napoli, Italy; (D.D.); (F.A.)
| | - Daniela D’Arco
- CEINGE-Biotecnologie Avanzate Scarl “Franco Salvatore”, Via G. Salvatore 486, 80145 Napoli, Italy; (D.D.); (F.A.)
| | - Fiorenzo Moscatelli
- Department of Human Sciences, Telematic University Pegaso, 80100 Naples, Italy;
| | - Antonio Pisani
- Unità di Nefrologia, Dipartimento di Sanità Pubblica, Università di Napoli “Federico II”, Via Pansini 5, 80131 Napoli, Italy; (A.P.); (M.A.); (E.R.); (I.C.)
| | - Maria Amicone
- Unità di Nefrologia, Dipartimento di Sanità Pubblica, Università di Napoli “Federico II”, Via Pansini 5, 80131 Napoli, Italy; (A.P.); (M.A.); (E.R.); (I.C.)
| | - Eleonora Riccio
- Unità di Nefrologia, Dipartimento di Sanità Pubblica, Università di Napoli “Federico II”, Via Pansini 5, 80131 Napoli, Italy; (A.P.); (M.A.); (E.R.); (I.C.)
| | - Ivana Capuano
- Unità di Nefrologia, Dipartimento di Sanità Pubblica, Università di Napoli “Federico II”, Via Pansini 5, 80131 Napoli, Italy; (A.P.); (M.A.); (E.R.); (I.C.)
| | - Francesca Argentino
- CEINGE-Biotecnologie Avanzate Scarl “Franco Salvatore”, Via G. Salvatore 486, 80145 Napoli, Italy; (D.D.); (F.A.)
| | - Marcellino Monda
- Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Dipartimento di Medicina Sperimentale, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.); (G.M.)
| | - Giovanni Messina
- Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Dipartimento di Medicina Sperimentale, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.); (G.M.)
| | - Aurora Daniele
- CEINGE-Biotecnologie Avanzate Scarl “Franco Salvatore”, Via G. Salvatore 486, 80145 Napoli, Italy; (D.D.); (F.A.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi “Federico II”, Via Pansini 5, 80131 Napoli, Italy
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
3
|
Zhang X, Liu Y, Sun H, Chen S, Tang P, Hu Q, He M, Tang N, Li Z, Chen D. Long-term dietary exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) reduced feeding in common carp (Cyprinus carpio): Via the JAK-STAT signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123966. [PMID: 38621451 DOI: 10.1016/j.envpol.2024.123966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely present in water ecosystems where they pose a significant threat to aquatic life, but our knowledge about how PBDEs affect feeding is limited. Therefore, this study explored the effects of continuous dietary exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) (40 and 4000 ng/g) on the feeding in common carp (Cyprinus carpio) and the underlying mechanism. BDE-47 significantly decreased the food intake of carp. Transcriptome analysis of brain tissue showed that BDE-47 mainly affected the nervous, immune, and endocrine systems. Further examination of the expression levels of appetite factors in the brain revealed that BDE-47 caused dysregulation of appetite factors expressions such as agrp, pomc, cart, etc. In addition, the JAK-STAT signaling pathway was activated under BDE-47 exposure. It can be concluded from these findings that BDE-47 activated the JAK-STAT signaling pathway, causing imbalanced expression of appetite factors, leading to disordered feeding behavior and decreased food intake in carp. These results provide an important reference for a more comprehensive understanding of the hazards posed by BDE-47 on animal feeding and the associated mechanisms.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Youlian Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huimin Sun
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuhuang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peng Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Hu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengxuan He
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
4
|
Álamo C, Sáiz Ruiz J, Zaragozá Arnáez C. Orexinergic Receptor Antagonists as a New Therapeutic Target to Overcome Limitations of Current Pharmacological Treatment of Insomnia Disorder. ACTAS ESPANOLAS DE PSIQUIATRIA 2024; 52:172-182. [PMID: 38622003 PMCID: PMC11015820 DOI: 10.62641/aep.v52i2.1659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Insomnia disorder is a common condition that is considered a risk factor for multiple physical and mental disorders, contributing to reduced quality of life and increased healthcare expenditures. Although cognitive behavioral therapy (CBT) is typically recommended as the primary intervention, its accessibility is hindered by limited resources, prompting the prevalent use of pharmacological interventions as the primary treatment in clinical settings. This study reviews the benefits and risks of current pharmacological treatments for insomnia, with special reference to the orexinergic system as a novel therapeutic target for treatment. The prescription of GABAergic mechanism enhancers (benzodiazepine (BZD) and "Z drugs") has shown efficacy in short-term insomnia treatment (less than 4 weeks), however, concerns arise regarding their long-term effectiveness, unfavorable tolerability and safety profiles, including the potential for dependency. Drugs with antihistamine properties, including certain antidepressants and antipsychotics, exhibit short-term efficacy but have documented tolerability limitations, especially in the elderly. The use of melatonin, available in various formulations, lacks comprehensive long-term data. Dual orexin receptor antagonists (DORAs) such as daridorexant, lemborexant, and suvorexant, represent a novel approach to insomnia treatment by inhibiting wakefulness rather than enhancing sedation. As the only DORA approved for insomnia treatment by the European Medicines Agency (EMA) and Food and Drug Administration (FDA), daridorexant has demonstrated sustained efficacy over a 12-month period, improving nocturnal sleep parameters and daytime functionality, with a favorable safety and tolerability profile.
Collapse
Affiliation(s)
- Cecilio Álamo
- Departamento de Ciencias Biomédicas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Madrid, Spain
| | | | - Cristina Zaragozá Arnáez
- Departamento de Ciencias Biomédicas, Facultad de Farmacia, Universidad de Alcalá, 28805 Madrid, Spain
| |
Collapse
|
5
|
Jászberényi M, Thurzó B, Bagosi Z, Vécsei L, Tanaka M. The Orexin/Hypocretin System, the Peptidergic Regulator of Vigilance, Orchestrates Adaptation to Stress. Biomedicines 2024; 12:448. [PMID: 38398050 PMCID: PMC10886661 DOI: 10.3390/biomedicines12020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The orexin/hypocretin neuropeptide family has emerged as a focal point of neuroscientific research following the discovery that this family plays a crucial role in a variety of physiological and behavioral processes. These neuropeptides serve as powerful neuromodulators, intricately shaping autonomic, endocrine, and behavioral responses across species. Notably, they serve as master regulators of vigilance and stress responses; however, their roles in food intake, metabolism, and thermoregulation appear complementary and warrant further investigation. This narrative review provides a journey through the evolution of our understanding of the orexin system, from its initial discovery to the promising progress made in developing orexin derivatives. It goes beyond conventional boundaries, striving to synthesize the multifaceted activities of orexins. Special emphasis is placed on domains such as stress response, fear, anxiety, and learning, in which the authors have contributed to the literature with original publications. This paper also overviews the advancement of orexin pharmacology, which has already yielded some promising successes, particularly in the treatment of sleep disorders.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, H-6725 Szeged, Hungary
| | - Zsolt Bagosi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary;
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|