1
|
Gao Y, Wang Y, Zhou Y, Ding J, Chang X, Qiu L, Huo L, Wen J, Zhang Y, Tong A. Two-hit model for the development of aldosterone-producing adenoma: supporting from two new cases. J Hypertens 2024:00004872-990000000-00570. [PMID: 39445622 DOI: 10.1097/hjh.0000000000003888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024]
Abstract
Recently, a two-hit model for the development of aldosterone-producing adenoma (APA) was proposed but until now, only two cases supporting the model have been reported. Here, we present two new cases of primary aldosteronism (PA), both of which had large functional adenomas with somatic mutations in aldosterone-driving genes. Furthermore, the first patient, who had a history of colorectal cancer, was found to have a germline and an additional somatic mutation in APC, and APC inactivation was confirmed by immunohistochemistry. The other patient had pathogenic somatic mutation inCTNNB1. These pro-proliferation mutations resulted in abnormal activation of the Wnt/β-catenin pathway. Two consecutive events apparent in these patients, namely, the first event leading to cell proliferation and the second driving hormonal hypersecretion, supported the two-hit model of APA development. The two-hit model usually occurs in the larger adenomas, and the driving factors of the first hit that promote cell proliferation still require further research and exploration.
Collapse
Affiliation(s)
- Yinjie Gao
- NHC Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yu Wang
- NHC Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences
| | - Yue Zhou
- NHC Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences
| | - Jie Ding
- Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine and State Key Laboratory of Complex Severe and Rare Diseases
| | | | - Ling Qiu
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Clinical Laboratory
| | - Li Huo
- Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine and State Key Laboratory of Complex Severe and Rare Diseases
| | - Jin Wen
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yushi Zhang
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Anli Tong
- NHC Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences
| |
Collapse
|
2
|
Tang X, Ortner NJ, Nikonishyna YV, Fernández-Quintero ML, Kokot J, Striessnig J, Liedl KR. Pathogenicity of de novo CACNA1D Ca 2+ channel variants predicted from sequence co-variation. Eur J Hum Genet 2024; 32:1065-1073. [PMID: 38553610 PMCID: PMC11369236 DOI: 10.1038/s41431-024-01594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 09/04/2024] Open
Abstract
Voltage-gated L-type Cav1.3 Ca2+ channels support numerous physiological functions including neuronal excitability, sinoatrial node pacemaking, hearing, and hormone secretion. De novo missense mutations in the gene of their pore-forming α1-subunit (CACNA1D) induce severe gating defects which lead to autism spectrum disorder and a more severe neurological disorder with and without endocrine symptoms. The number of CACNA1D variants reported is constantly rising, but their pathogenic potential often remains unclear, which complicates clinical decision-making. Since functional tests are time-consuming and not always available, bioinformatic tools further improving pathogenicity potential prediction of novel variants are needed. Here we employed evolutionary analysis considering sequences of the Cav1.3 α1-subunit throughout the animal kingdom to predict the pathogenicity of human disease-associated CACNA1D missense variants. Co-variation analyses of evolutionary information revealed residue-residue couplings and allowed to generate a score, which correctly predicted previously identified pathogenic variants, supported pathogenicity in variants previously classified as likely pathogenic and even led to the re-classification or re-examination of 18 out of 80 variants previously assessed with clinical and electrophysiological data. Based on the prediction score, we electrophysiologically tested one variant (V584I) and found significant gating changes associated with pathogenic risks. Thus, our co-variation model represents a valuable addition to complement the assessment of the pathogenicity of CACNA1D variants completely independent of clinical diagnoses, electrophysiology, structural or biophysical considerations, and solely based on evolutionary analyses.
Collapse
Affiliation(s)
- Xuechen Tang
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Nadine J Ortner
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Yuliia V Nikonishyna
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Monica L Fernández-Quintero
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Janik Kokot
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020, Innsbruck, Austria.
| | - Klaus R Liedl
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020, Innsbruck, Austria.
| |
Collapse
|
3
|
Azizan EAB, Drake WM, Brown MJ. Primary aldosteronism: molecular medicine meets public health. Nat Rev Nephrol 2023; 19:788-806. [PMID: 37612380 PMCID: PMC7615304 DOI: 10.1038/s41581-023-00753-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Primary aldosteronism is the most common single cause of hypertension and is potentially curable when only one adrenal gland is the culprit. The importance of primary aldosteronism to public health derives from its high prevalence but huge under-diagnosis (estimated to be <1% of all affected individuals), despite the consequences of poor blood pressure control by conventional therapy and enhanced cardiovascular risk. This state of affairs is attributable to the fact that the tools used for diagnosis or treatment are still those that originated in the 1970-1990s. Conversely, molecular discoveries have transformed our understanding of adrenal physiology and pathology. Many molecules and processes associated with constant adrenocortical renewal and interzonal metamorphosis also feature in aldosterone-producing adenomas and aldosterone-producing micronodules. The adrenal gland has one of the most significant rates of non-silent somatic mutations, with frequent selection of those driving autonomous aldosterone production, and distinct clinical presentations and outcomes for most genotypes. The disappearance of aldosterone synthesis and cells from most of the adult human zona glomerulosa is the likely driver of the mutational success that causes aldosterone-producing adenomas, but insights into the pathways that lead to constitutive aldosterone production and cell survival may open up opportunities for novel therapies.
Collapse
Affiliation(s)
- Elena A B Azizan
- Department of Medicine, Faculty of Medicine, The National University of Malaysia (UKM), Kuala Lumpur, Malaysia
- Endocrine Hypertension, Department of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - William M Drake
- St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
- NIHR Barts Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Morris J Brown
- Endocrine Hypertension, Department of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.
- NIHR Barts Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
4
|
Moyes CD, Dastjerdi SH, Robertson RM. Measuring enzyme activities in crude homogenates: Na +/K +-ATPase as a case study in optimizing assays. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110577. [PMID: 33609808 DOI: 10.1016/j.cbpb.2021.110577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/06/2021] [Accepted: 02/08/2021] [Indexed: 12/28/2022]
Abstract
In this review of assays of Na+/K+-ATPase (NKA), we explore the choices made by researchers assaying the enzyme to investigate its role in physiological regulation. We survey NKA structure and function in the context of how it is typically assayed, and how technical choices influence what can be said about the enzyme. In comparing different methods for extraction and assay of NKA, we identified a series of common pitfalls that compromise the veracity of results. We include experimental work to directly demonstrate how choices in detergents, salts and substrates influence NKA activities measured in crude homogenates. Our review of assay approaches integrates what is known from enzymology, biomedical physiology, cell biology and evolutionary biology, offering a more robust method for assaying the enzyme in meaningful ways, identifying caveats and future directions to explore its structure and function. The goal is to provide the sort of background on the enzyme that should be considered in exploring the function of the enzyme in comparative physiology.
Collapse
|
5
|
Nanba K, Yamazaki Y, Bick N, Onodera K, Tezuka Y, Omata K, Ono Y, Blinder AR, Tomlins SA, Rainey WE, Satoh F, Sasano H. Prevalence of Somatic Mutations in Aldosterone-Producing Adenomas in Japanese Patients. J Clin Endocrinol Metab 2020; 105:5897223. [PMID: 32844168 PMCID: PMC7947976 DOI: 10.1210/clinem/dgaa595] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/24/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Results of previous studies demonstrated clear racial differences in the prevalence of somatic mutations among patients with aldosterone-producing adenoma (APA). For instance, those in East Asian countries have a high prevalence of somatic mutations in KCNJ5, whereas somatic mutations in other aldosterone-driving genes are rare. OBJECTIVES To determine somatic mutation prevalence in Japanese APA patients using an aldosterone synthase (CYP11B2) immunohistochemistry (IHC)-guided sequencing approach. METHOD Patients with a unilateral form of primary aldosteronism who underwent adrenalectomy at the Tohoku University Hospital were studied. Based on CYP11B2 immunolocalization of resected adrenals, genomic DNA was isolated from the relevant positive area of 10% formalin-fixed, paraffin-embedded tissue of the APAs. Somatic mutations in aldosterone-driving genes were studied in APAs by direct Sanger sequencing and targeted next-generation sequencing. RESULTS CYP11B2 IHC-guided sequencing determined APA-related somatic mutations in 102 out of 106 APAs (96%). Somatic KCNJ5 mutation was the most frequent genetic alteration (73%) in this cohort of Japanese patients. Somatic mutations in other aldosterone-driving genes were also identified: CACNA1D (14%), ATP1A1 (5%), ATP2B3 (4%), and CACNA1H (1%), including 2 previously unreported mutations. KCNJ5 mutations were more often detected in APAs from female patients compared with those from male patients [95% (36/38) vs 60% (41/68); P < 0.0001]. CONCLUSION IHC-guided sequencing defined somatic mutations in over 95% of Japanese APAs. While the dominance of KCNJ5 mutations in this particular cohort was confirmed, a significantly higher KCNJ5 prevalence was detected in female patients. This study provides a better understanding of genetic spectrum of Japanese APA patients.
Collapse
Affiliation(s)
- Kazutaka Nanba
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nolan Bick
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Kei Onodera
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuta Tezuka
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Omata
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshikiyo Ono
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Amy R Blinder
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Scott A Tomlins
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | - William E Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Fumitoshi Satoh
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Correspondence and Reprint Requests: Hironobu Sasano, MD, PhD, Department of Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan. E-mail:
| |
Collapse
|
6
|
Ortner NJ, Kaserer T, Copeland JN, Striessnig J. De novo CACNA1D Ca 2+ channelopathies: clinical phenotypes and molecular mechanism. Pflugers Arch 2020; 472:755-773. [PMID: 32583268 PMCID: PMC7351864 DOI: 10.1007/s00424-020-02418-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
The identification of rare disease-causing variants in humans by large-scale next-generation sequencing (NGS) studies has also provided us with new insights into the pathophysiological role of de novo missense variants in the CACNA1D gene that encodes the pore-forming α1-subunit of voltage-gated Cav1.3 L-type Ca2+ channels. These CACNA1D variants have been identified somatically in aldosterone-producing adenomas as well as germline in patients with neurodevelopmental and in some cases endocrine symptoms. In vitro studies in heterologous expression systems have revealed typical gating changes that indicate enhanced Ca2+ influx through Cav1.3 channels as the underlying disease-causing mechanism. Here we summarize the clinical findings of 12 well-characterized individuals with a total of 9 high-risk pathogenic CACNA1D variants. Moreover, we propose how information from somatic mutations in aldosterone-producing adenomas could be used to predict the potential pathogenicity of novel germline variants. Since these pathogenic de novo variants can cause a channel-gain-of function, we also discuss the use of L-type Ca2+ channel blockers as a potential therapeutic option.
Collapse
Affiliation(s)
- Nadine J Ortner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| | - Teresa Kaserer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - J Nathan Copeland
- Duke Center for Autism and Brain Development, Duke Child and Family Mental Health and Developmental Neuroscience, Durham, USA
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
7
|
Rege J, Turcu AF, Rainey WE. Primary aldosteronism diagnostics: KCNJ5 mutations and hybrid steroid synthesis in aldosterone-producing adenomas. Gland Surg 2020; 9:3-13. [PMID: 32206594 DOI: 10.21037/gs.2019.10.22] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Primary aldosteronism (PA) is characterized by autonomous aldosterone production by renin-independent mechanisms and is most commonly sporadic. While 60-70% of sporadic PA can be attributed to bilateral hyperaldosteronism, the remaining 30-40% is caused by a unilateral aldosterone-producing adenoma (APA). Somatic mutations in or near the selectivity filter the KCNJ5 gene (encoding the potassium channel GIRK4) have been implicated in the pathogenesis of both sporadic and familial PA. Several studies using tumor tissue, peripheral and adrenal vein samples from PA patients have demonstrated that along with aldosterone, the hybrid steroids 18-hydroxycortisol (18OHF) and 18-oxocortisol (18oxoF) are a hallmark of APA harboring KCNJ5 mutations. Herein, we review the recent advances with respect to the molecular mechanisms underlying the pathogenesis of PA and the steroidogenic fingerprints of KCNJ5 mutations. In addition, we present an outlook toward the future of PA subtyping and diagnostic work-up utilizing steroid profiling.
Collapse
Affiliation(s)
- Juilee Rege
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Adina F Turcu
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - William E Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Omata K, Satoh F, Morimoto R, Ito S, Yamazaki Y, Nakamura Y, Anand SK, Guo Z, Stowasser M, Sasano H, Tomlins SA, Rainey WE. Cellular and Genetic Causes of Idiopathic Hyperaldosteronism. Hypertension 2019; 72:874-880. [PMID: 30354720 DOI: 10.1161/hypertensionaha.118.11086] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Primary aldosteronism affects ≈5% to 10% of hypertensive patients and has unilateral and bilateral forms. Most unilateral primary aldosteronism is caused by computed tomography-detectable aldosterone-producing adenomas, which express CYP11B2 (aldosterone synthase) and frequently harbor somatic mutations in aldosterone-regulating genes. The cause of the most common bilateral form of primary aldosteronism, idiopathic hyperaldosteronism (IHA), is believed to be diffuse hyperplasia of aldosterone-producing cells within the adrenal cortex. Herein, a multi-institution cohort of 15 IHA adrenals was examined with CYP11B2 immunohistochemistry and next-generation sequencing. CYP11B2 immunoreactivity in adrenal glomerulosa harboring non-nodular hyperplasia was only observed in 4/15 IHA adrenals suggesting that hyperplasia of CYP11B2-expressing cells may not be the major cause of IHA. However, the adrenal cortex of all IHA adrenals harbored at least 1 CYP11B2-positive aldosterone-producing cell cluster (APCC) or micro-aldosterone-producing adenomas. The number of APCCs per case (and individual APCC area) in IHA adrenals was significantly larger than in normotensive controls. Next-generation sequencing of DNA from 99 IHA APCCs demonstrated somatic mutations in genes encoding the L-type calcium voltage-gated channel subunit α 1-D ( CACNA1D, n=57; 58%) and potassium voltage-gated channel subfamily J-5 ( KCNJ5, n=1; 1%). These data suggest that IHA may result from not only hyperplasia but also the accumulation or enlargement of computed tomography-undetectable APCC harboring somatic aldosterone-driver gene mutations. The high prevalence of mutations in the CACNA1D L-type calcium channel provides a potential actionable therapeutic target that could complement mineralocorticoid blockade and inhibit aldosterone overproduction in some IHA patients.
Collapse
Affiliation(s)
- Kei Omata
- From the Department of Pathology (K.O., S.K.A., S.A.T.), University of Michigan, Ann Arbor.,Division of Nephrology, Endocrinology and Vascular Medicine (K.O., F.S., R.M., S.I.), Tohoku University, Miyagi, Japan.,Division of Clinical Hypertension, Endocrinology and Metabolism (K.O., F.S.), Tohoku University, Miyagi, Japan
| | - Fumitoshi Satoh
- Division of Nephrology, Endocrinology and Vascular Medicine (K.O., F.S., R.M., S.I.), Tohoku University, Miyagi, Japan.,Division of Clinical Hypertension, Endocrinology and Metabolism (K.O., F.S.), Tohoku University, Miyagi, Japan
| | - Ryo Morimoto
- Division of Nephrology, Endocrinology and Vascular Medicine (K.O., F.S., R.M., S.I.), Tohoku University, Miyagi, Japan
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology and Vascular Medicine (K.O., F.S., R.M., S.I.), Tohoku University, Miyagi, Japan
| | - Yuto Yamazaki
- Department of Pathology (Y.Y., Y.N., H.S.), Tohoku University, Miyagi, Japan
| | - Yasuhiro Nakamura
- Department of Pathology (Y.Y., Y.N., H.S.), Tohoku University, Miyagi, Japan.,Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Miyagi, Japan (Y.N.)
| | - Sharath K Anand
- From the Department of Pathology (K.O., S.K.A., S.A.T.), University of Michigan, Ann Arbor
| | - Zeng Guo
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia (Z.G., M.S.)
| | - Michael Stowasser
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia (Z.G., M.S.)
| | - Hironobu Sasano
- Department of Pathology (Y.Y., Y.N., H.S.), Tohoku University, Miyagi, Japan
| | - Scott A Tomlins
- From the Department of Pathology (K.O., S.K.A., S.A.T.), University of Michigan, Ann Arbor.,Michigan Center for Translational Pathology (S.A.T.), Department of Urology (S.A.T.), Comprehensive Cancer Center (S.A.T.), University of Michigan, Ann Arbor
| | - William E Rainey
- Department of Molecular and Integrative Physiology (W.E.R.), and Department of Medicine (W.E.R.), University of Michigan, Ann Arbor
| |
Collapse
|
9
|
Yamazaki Y, Omata K, Tezuka Y, Ono Y, Morimoto R, Adachi Y, Ise K, Nakamura Y, Gomez-Sanchez CE, Shibahara Y, Kitamoto T, Nishikawa T, Ito S, Satoh F, Sasano H. Tumor Cell Subtypes Based on the Intracellular Hormonal Activity in KCNJ5-Mutated Aldosterone-Producing Adenoma. Hypertension 2019; 72:632-640. [PMID: 30354756 DOI: 10.1161/hypertensionaha.118.10907] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aldosterone-producing adenomas (APAs) harbor marked intratumoral heterogeneity in terms of morphology, steroidogenesis, and genetics. However, an association of biological significance of morphologically identified tumor cell subtypes and genotypes is virtually unknown. KCNJ5 mutation is most frequently detected and generally considered a curable phenotype by adrenalectomy. Therefore, to explore the biological significance of KCNJ5 mutation in APA based on intracellular hormonal activities, 35 consecutively selected APAs (n=18; KCNJ5 mutated, n=17; wild type) were quantitatively examined in the whole tumor areas by newly developed digital image analysis incorporating their histological and ultrastructural features (14 cells from 2 KCNJ5-mutated APAs and 15 cells from 1 wild type) and CYP11B2 immunoreactivity. Results demonstrated that KCNJ5-mutated APAs had significantly lower nuclear/cytoplasm ratio and more abundant clear cells than wild type. CYP11B2 immunoreactivity was not significantly different between these genotypes, but a significant correlation was detected between the proportion of clear cells and CYP11B2 immunoreactivity in all of the APAs examined. CYP11B2 was predominantly immunolocalized in clear cells in KCNJ5-mutated APAs. Quantitative ultrastructural analysis revealed that KCNJ5-mutated APAs had significantly more abundant and smaller-sized mitochondria with well-developed cristae than wild type, whereas wild type had more abundant lipid droplets per unit area despite the small number of the cases examined. Our results did provide the novel insights into the morphological features of APA based on their biological significance. KCNJ5-mutated APAs were characterized by predominance of enlarged lipid-rich clear cells possibly resulting in increased neoplastic aldosterone biosynthesis.
Collapse
Affiliation(s)
- Yuto Yamazaki
- From the Department of Pathology (Y.Y., K.I., Y.N., H.S.)
| | - Kei Omata
- Division of Clinical Hypertension, Endocrinology and Metabolism (K.O., Y.T., F.S.), Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Nephrology, Endocrinology, and Vascular Medicine (K.O., Y.T., Y.O., R.M., S.I., F.S.).,Department of Pathology, University of Michigan Medical School, Ann Arbor (K.O.)
| | - Yuta Tezuka
- Division of Clinical Hypertension, Endocrinology and Metabolism (K.O., Y.T., F.S.), Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Nephrology, Endocrinology, and Vascular Medicine (K.O., Y.T., Y.O., R.M., S.I., F.S.)
| | - Yoshikiyo Ono
- Division of Nephrology, Endocrinology, and Vascular Medicine (K.O., Y.T., Y.O., R.M., S.I., F.S.).,Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor (Y.O.)
| | - Ryo Morimoto
- Division of Nephrology, Endocrinology, and Vascular Medicine (K.O., Y.T., Y.O., R.M., S.I., F.S.)
| | - Yuzu Adachi
- Department of Pathology (Y.A.), Tohoku University Hospital, Sendai, Japan
| | - Kazue Ise
- From the Department of Pathology (Y.Y., K.I., Y.N., H.S.).,Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan (K.I., Y.N.)
| | - Yasuhiro Nakamura
- From the Department of Pathology (Y.Y., K.I., Y.N., H.S.).,Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan (K.I., Y.N.)
| | - Celso E Gomez-Sanchez
- Division of Endocrinology, Department of Medicine, The University of Mississippi Medical Center, Jackson (C.E.G.-S.).,Research and Medicine Services, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS (C.E.G.-S.)
| | | | - Takumi Kitamoto
- Endocrinology and Diabetes Center (T.K., T.N.), Yokohama Rosai Hospital, Japan.,Division of Endocrinology, Department of Medicine, Columbia University, New York, NY (T.K.)
| | - Tetsuo Nishikawa
- Endocrinology and Diabetes Center (T.K., T.N.), Yokohama Rosai Hospital, Japan
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology, and Vascular Medicine (K.O., Y.T., Y.O., R.M., S.I., F.S.)
| | - Fumitoshi Satoh
- Division of Clinical Hypertension, Endocrinology and Metabolism (K.O., Y.T., F.S.), Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Nephrology, Endocrinology, and Vascular Medicine (K.O., Y.T., Y.O., R.M., S.I., F.S.)
| | | |
Collapse
|
10
|
Sweadner KJ, Arystarkhova E, Penniston JT, Swoboda KJ, Brashear A, Ozelius LJ. Genotype-structure-phenotype relationships diverge in paralogs ATP1A1, ATP1A2, and ATP1A3. NEUROLOGY-GENETICS 2019; 5:e303. [PMID: 30842972 PMCID: PMC6384024 DOI: 10.1212/nxg.0000000000000303] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/08/2018] [Indexed: 11/15/2022]
Abstract
Objective We tested the assumption that closely related genes should have similar pathogenic variants by analyzing >200 pathogenic variants in a gene family with high neurologic impact and high sequence identity, the Na,K-ATPases ATP1A1, ATP1A2, and ATP1A3. Methods Data sets of disease-associated variants were compared. Their equivalent positions in protein crystal structures were used for insights into pathogenicity and correlated with the phenotype and conservation of homology. Results Relatively few mutations affected the corresponding amino acids in 2 genes. In the membrane domain of ATP1A3 (primarily expressed in neurons), variants producing milder neurologic phenotypes had different structural positions than variants producing severe phenotypes. In ATP1A2 (primarily expressed in astrocytes), membrane domain variants characteristic of severe phenotypes in ATP1A3 were absent from patient data. The known variants in ATP1A1 fell into 2 distinct groups. Sequence conservation was an imperfect indicator: it varied among structural domains, and some variants with demonstrated pathogenicity were in low conservation sites. Conclusions Pathogenic variants varied between genes despite high sequence identity, and there is a genotype-structure-phenotype relationship in ATP1A3 that correlates with neurologic outcomes. The absence of "severe" pathogenic variants in ATP1A2 patients predicts that they will manifest either in a different tissue or by death in utero and that new ATP1A1 variants will produce additional phenotypes. It is important that some variants in poorly conserved amino acids are nonetheless pathogenic and could be incorrectly predicted to be benign.
Collapse
Affiliation(s)
- Kathleen J Sweadner
- Department of Neurosurgery (K.J. Sweadner, E.A., J.T.P.), Center for Human Genetics Research (K.J. Swoboda), and Department of Neurology, (K.J. Swoboda, L.J.O.) Massachusetts General Hospital, Boston; and the Department of Neurology (A.B.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Elena Arystarkhova
- Department of Neurosurgery (K.J. Sweadner, E.A., J.T.P.), Center for Human Genetics Research (K.J. Swoboda), and Department of Neurology, (K.J. Swoboda, L.J.O.) Massachusetts General Hospital, Boston; and the Department of Neurology (A.B.), Wake Forest School of Medicine, Winston-Salem, NC
| | - John T Penniston
- Department of Neurosurgery (K.J. Sweadner, E.A., J.T.P.), Center for Human Genetics Research (K.J. Swoboda), and Department of Neurology, (K.J. Swoboda, L.J.O.) Massachusetts General Hospital, Boston; and the Department of Neurology (A.B.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Kathryn J Swoboda
- Department of Neurosurgery (K.J. Sweadner, E.A., J.T.P.), Center for Human Genetics Research (K.J. Swoboda), and Department of Neurology, (K.J. Swoboda, L.J.O.) Massachusetts General Hospital, Boston; and the Department of Neurology (A.B.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Allison Brashear
- Department of Neurosurgery (K.J. Sweadner, E.A., J.T.P.), Center for Human Genetics Research (K.J. Swoboda), and Department of Neurology, (K.J. Swoboda, L.J.O.) Massachusetts General Hospital, Boston; and the Department of Neurology (A.B.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Laurie J Ozelius
- Department of Neurosurgery (K.J. Sweadner, E.A., J.T.P.), Center for Human Genetics Research (K.J. Swoboda), and Department of Neurology, (K.J. Swoboda, L.J.O.) Massachusetts General Hospital, Boston; and the Department of Neurology (A.B.), Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
11
|
Seccia TM, Caroccia B, Gomez-Sanchez EP, Gomez-Sanchez CE, Rossi GP. The Biology of Normal Zona Glomerulosa and Aldosterone-Producing Adenoma: Pathological Implications. Endocr Rev 2018; 39:1029-1056. [PMID: 30007283 PMCID: PMC6236434 DOI: 10.1210/er.2018-00060] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 07/03/2018] [Indexed: 01/09/2023]
Abstract
The identification of several germline and somatic ion channel mutations in aldosterone-producing adenomas (APAs) and detection of cell clusters that can be responsible for excess aldosterone production, as well as the isolation of autoantibodies activating the angiotensin II type 1 receptor, have rapidly advanced the understanding of the biology of primary aldosteronism (PA), particularly that of APA. Hence, the main purpose of this review is to discuss how discoveries of the last decade could affect histopathology analysis and clinical practice. The structural remodeling through development and aging of the human adrenal cortex, particularly of the zona glomerulosa, and the complex regulation of aldosterone, with emphasis on the concepts of zonation and channelopathies, will be addressed. Finally, the diagnostic workup for PA and its subtyping to optimize treatment are reviewed.
Collapse
Affiliation(s)
- Teresa M Seccia
- Department of Medicine-DIMED, University of Padua, Padua PD, Italy
| | | | - Elise P Gomez-Sanchez
- Department of Pharmacology and Toxicology, G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi
| | - Celso E Gomez-Sanchez
- Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi.,University of Mississippi Medical Center, Jackson, Mississippi
| | - Gian Paolo Rossi
- Department of Medicine-DIMED, University of Padua, Padua PD, Italy
| |
Collapse
|
12
|
Currie G, Delles C. Precision Medicine and Personalized Medicine in Cardiovascular Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1065:589-605. [PMID: 30051409 DOI: 10.1007/978-3-319-77932-4_36] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Precision medicine aims to offer "the right treatment to the right patient at the right time." In cardiovascular medicine the potential of precision medicine applies to all stages of the disease development and includes risk prediction, preventative measures, and targeted therapeutic approaches. Precision medicine will benefit from new developments in the area of genomics and other omics but equally heavily depends on established biomarkers, functional tests, and imaging. Cardiovascular medicine often relies on noninvasive diagnostic procedures and symptom-based disease management. In contrast, other clinical disciplines including oncology and immunology have already moved to molecular diagnostics that lend themselves to precision medicine approaches. There are opportunities to implement precision medicine approaches by focusing on common diseases such as hypertension, conditions with diagnostic and prognostic uncertainty such as angina, and conditions that are associated with high mortality and involve costly and potentially harmful interventions such as dilated cardiomyopathy and cardiac resynchronization therapy. Sex and gender issues have not yet been fully explored in precision medicine although the opportunity to use molecular data to more accurately manage men and women with cardiovascular disease has been acknowledged. A mindshift is required in order to fully exploit the potential of precision medicine to tackle the global burden of cardiovascular diseases.
Collapse
Affiliation(s)
- Gemma Currie
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, Glasgow, Scotland, UK
| | - Christian Delles
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, Glasgow, Scotland, UK.
| |
Collapse
|
13
|
Affiliation(s)
- Kazutaka Nanba
- From the Department of Molecular and Integrative Physiology (K.N., W.E.R.), and Department of Internal Medicine (W.E.R.), University of Michigan, Ann Arbor; and Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (A.V.).
| | - Anand Vaidya
- From the Department of Molecular and Integrative Physiology (K.N., W.E.R.), and Department of Internal Medicine (W.E.R.), University of Michigan, Ann Arbor; and Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (A.V.)
| | - William E Rainey
- From the Department of Molecular and Integrative Physiology (K.N., W.E.R.), and Department of Internal Medicine (W.E.R.), University of Michigan, Ann Arbor; and Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (A.V.)
| |
Collapse
|
14
|
Meyer DJ, Gatto C, Artigas P. On the effect of hyperaldosteronism-inducing mutations in Na/K pumps. J Gen Physiol 2017; 149:1009-1028. [PMID: 29030398 PMCID: PMC5677107 DOI: 10.1085/jgp.201711827] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 11/29/2022] Open
Abstract
Mutated Na/K pumps in adrenal adenomas are thought to cause hyperaldosteronism via a gain-of-function effect involving a depolarizing inward current. The findings of Meyer et al. suggest instead that the common mechanism by which Na/K pump mutants lead to hyperaldosteronism is a loss-of-function. Primary aldosteronism, a condition in which too much aldosterone is produced and that leads to hypertension, is often initiated by an aldosterone-producing adenoma within the zona glomerulosa of the adrenal cortex. Somatic mutations of ATP1A1, encoding the Na/K pump α1 subunit, have been found in these adenomas. It has been proposed that a passive inward current transported by several of these mutant pumps is a "gain-of-function" activity that produces membrane depolarization and concomitant increases in aldosterone production. Here, we investigate whether the inward current through mutant Na/K pumps is large enough to induce depolarization of the cells that harbor them. We first investigate inward currents induced by these mutations in Xenopus Na/K pumps expressed in Xenopus oocytes and find that these inward currents are similar in amplitude to wild-type outward Na/K pump currents. Subsequently, we perform a detailed functional evaluation of the human Na/K pump mutants L104R, delF100-L104, V332G, and EETA963S expressed in Xenopus oocytes. By combining two-electrode voltage clamp with [3H]ouabain binding, we measure the turnover rate of these inward currents and compare it to the turnover rate for outward current through wild-type pumps. We find that the turnover rate of the inward current through two of these mutants (EETA963S and L104R) is too small to induce significant cell depolarization. Electrophysiological characterization of another hyperaldosteronism-inducing mutation, G99R, reveals the absence of inward currents under many different conditions, including in the presence of the regulator FXYD1 as well as with mammalian ionic concentrations and body temperatures. Instead, we observe robust outward currents, but with significantly reduced affinities for intracellular Na+ and extracellular K+. Collectively, our results point to loss-of-function as the common mechanism for the hyperaldosteronism induced by these Na/K pump mutants.
Collapse
Affiliation(s)
- Dylan J Meyer
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX.,School of Biological Sciences, Illinois State University, Normal, IL
| | - Craig Gatto
- School of Biological Sciences, Illinois State University, Normal, IL
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| |
Collapse
|
15
|
Tan GC, Negro G, Pinggera A, Tizen Laim NMS, Mohamed Rose I, Ceral J, Ryska A, Chin LK, Kamaruddin NA, Mohd Mokhtar N, A. Jamal AR, Sukor N, Solar M, Striessnig J, Brown MJ, Azizan EA. Aldosterone-Producing Adenomas. Hypertension 2017; 70:129-136. [DOI: 10.1161/hypertensionaha.117.09057] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 01/23/2017] [Accepted: 04/27/2017] [Indexed: 11/16/2022]
Abstract
Mutations in
KCNJ5
,
ATP1A1
,
ATP2B3
,
CACNA1D
, and
CTNNB1
are thought to cause the excessive autonomous aldosterone secretion of aldosterone-producing adenomas (APAs). The histopathology of
KCNJ5
mutant APAs, the most common and largest, has been thoroughly investigated and shown to have a zona fasciculata–like composition. This study aims to characterize the histopathologic spectrum of the other genotypes and document the proliferation rate of the different sized APAs. Adrenals from 39 primary aldosteronism patients were immunohistochemically stained for CYP11B2 to confirm diagnosis of an APA. Twenty-eight adenomas had sufficient material for further analysis and were target sequenced at hot spots in the 5 causal genes. Ten adenomas had a
KCNJ5
mutation (35.7%), 7 adenomas had an
ATP1A1
mutation (25%), and 4 adenomas had a
CACNA1D
mutation (14.3%). One novel mutation in exon 28 of
CACNA1D
(V1153G) was identified. The mutation caused a hyperpolarizing shift of the voltage-dependent activation and inactivation and slowed the channel’s inactivation kinetics. Immunohistochemical stainings of CYP17A1 as a zona fasciculata cell marker and Ki67 as a proliferation marker were used.
KCNJ5
mutant adenomas showed a strong expression of CYP17A1, whereas
ATP1A1
/
CACNA1D
mutant adenomas had a predominantly negative expression (
P
value =1.20×10
−4
).
ATP1A1
/
CACNA1D
mutant adenomas had twice the nuclei with intense staining of Ki67 than
KCNJ5
mutant adenomas (0.7% [0.5%–1.9%] versus 0.4% [0.3%–0.7%];
P
value =0.04). Further, 3 adenomas with either an
ATP1A1
mutation or a
CACNA1D
mutation had >30% nuclei with moderate Ki67 staining. In summary, similar to
KCNJ5
mutant APAs,
ATP1A1
and
CACNA1D
mutant adenomas have a seemingly specific histopathologic phenotype.
Collapse
Affiliation(s)
- Geok Chin Tan
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - Giulia Negro
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - Alexandra Pinggera
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - Nur Maya Sabrina Tizen Laim
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - Isa Mohamed Rose
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - Jiri Ceral
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - Ales Ryska
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - Long Kha Chin
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - Nor Azmi Kamaruddin
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - Norfilza Mohd Mokhtar
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - A. Rahman A. Jamal
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - Norlela Sukor
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - Miroslav Solar
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - Joerg Striessnig
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - Morris Jonathan Brown
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - Elena Aisha Azizan
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| |
Collapse
|
16
|
Omata K, Anand SK, Hovelson DH, Liu CJ, Yamazaki Y, Nakamura Y, Ito S, Satoh F, Sasano H, Rainey WE, Tomlins SA. Aldosterone-Producing Cell Clusters Frequently Harbor Somatic Mutations and Accumulate With Age in Normal Adrenals. J Endocr Soc 2017; 1:787-799. [PMID: 29264530 PMCID: PMC5686701 DOI: 10.1210/js.2017-00134] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/09/2017] [Indexed: 01/24/2023] Open
Abstract
CONTEXT Aldosterone synthase (CYP11B2) immunohistochemistry and next-generation sequencing (NGS) have revealed the frequent presence of aldosterone-producing cell clusters (APCCs) harboring somatic mutations in aldosterone-regulating genes in adrenals from Americans without defined hypertension status. OBJECTIVE Determine the frequency and somatic mutation status of APCCs in a Japanese nonhypertensive cohort. DESIGN SETTING PATIENTS AND INTERVENTIONS Adrenals from 837 consecutive autopsies at a Japanese institution, Tohoku University Hospital, were screened to select 107 unilateral adrenal glands from nonhypertensive patients. APCC score (APCC number/adrenal cortex area per case) was assessed by CYP11B2 immunohistochemistry. DNA from all APCCs and adjacent adrenal cortex was subjected to NGS using two panels targeting aldosterone-regulating genes. PRIMARY OUTCOME MEASURE APCC frequency and somatic mutation spectrum. RESULTS In 107 adrenals, 61 APCCs were detected (average of 0.6 APCCs per gland). APCC score was positively correlated with age (r = 0.50, P < 0.0001). NGS demonstrated high confidence somatic mutations in 21 of 61 APCCs (34%). Notably, 16 of 21 APCCs (76%) harbored somatic mutations in CACNA1D, the most frequently mutated gene in our previous studies of APCCs in Americans and CYP11B2-positive micronodules in cross-sectional imaging (computed tomography) negative primary aldosteronism (PA), whereas no APCCs harbored mutations in KCNJ5, the most frequently mutated gene in aldosterone-producing adenoma. APCC score was significantly lower than our previous cohort of unilateral computed tomography-negative PA. CONCLUSIONS APCCs are frequent in nonhypertensive Japanese adrenals, accumulate with age, and frequently harbor somatic mutations (most commonly in CACNA1D). The role of APCCs in PA pathobiology and non-PA hypertension warrants further investigation.
Collapse
Affiliation(s)
- Kei Omata
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University, 980-0872 Sendai, Miyagi, Japan
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University, 980-0872 Sendai, Miyagi, Japan
| | - Sharath K. Anand
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109
| | - Daniel H. Hovelson
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109
| | - Chia-Jen Liu
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University, 980-0872 Sendai, Miyagi, Japan
| | - Yasuhiro Nakamura
- Department of Pathology, Tohoku University, 980-0872 Sendai, Miyagi, Japan
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University, 980-0872 Sendai, Miyagi, Japan
| | - Fumitoshi Satoh
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University, 980-0872 Sendai, Miyagi, Japan
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University, 980-0872 Sendai, Miyagi, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University, 980-0872 Sendai, Miyagi, Japan
| | - William E. Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Scott A. Tomlins
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Urology, University of Michigan, Ann Arbor, Michigan 48109
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
17
|
Affiliation(s)
- Fumitoshi Satoh
- From the Division of Clinical Hypertension, Endocrinology and Metabolism (F.S.) and Department of Pathology (H.S., Y.Y.), Tohoku University Graduate School of Medicine, Sendai, Japan; and Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan (F.S., S.I.)
| | - Hironobu Sasano
- From the Division of Clinical Hypertension, Endocrinology and Metabolism (F.S.) and Department of Pathology (H.S., Y.Y.), Tohoku University Graduate School of Medicine, Sendai, Japan; and Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan (F.S., S.I.)
| | - Yuto Yamazaki
- From the Division of Clinical Hypertension, Endocrinology and Metabolism (F.S.) and Department of Pathology (H.S., Y.Y.), Tohoku University Graduate School of Medicine, Sendai, Japan; and Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan (F.S., S.I.)
| | - Sadayoshi Ito
- From the Division of Clinical Hypertension, Endocrinology and Metabolism (F.S.) and Department of Pathology (H.S., Y.Y.), Tohoku University Graduate School of Medicine, Sendai, Japan; and Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan (F.S., S.I.)
| |
Collapse
|
18
|
Romero DG, Yanes Cardozo LL. Clinical Practice Guideline for Management of Primary Aldosteronism: What is New in the 2016 Update? ACTA ACUST UNITED AC 2016; 2. [PMID: 28018978 PMCID: PMC5175479 DOI: 10.16966/2380-548x.129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Primary Aldosteronism is the single most common cause of secondary hypertension and is associated with increased target organ injury. The Endocrine Society has recently released the updated Clinical Practice Guideline for Primary Aldosteronism entitled “The Management of Primary Aldosteronism: Case Detection, Diagnosis, and Treatment: An Endocrine Society Clinical Practice Guideline”. We review the updated Clinical Practice Guideline, highlighting the new recommendations and the implications that they may have in clinical practice. The recognition by the Endocrine Society’s Task Force that Primary Aldosteronism is a public health issue and that the population at risk for screening should be significantly expanded will surely have an impact in the clinical practice which hopefully will translate in better detection, diagnosis and treatment of patients with Primary Aldosteronism.
Collapse
Affiliation(s)
- Damian G Romero
- Department of Biochemistry, University of Mississippi Medical Center Jackson, USA; Women's Health Research Center, University of Mississippi Medical Center and Jackson, USA; Cardio-Renal Research Center, University of Mississippi Medical Center Jackson, USA
| | - Licy L Yanes Cardozo
- Women's Health Research Center, University of Mississippi Medical Center and Jackson, USA; Cardio-Renal Research Center, University of Mississippi Medical Center Jackson, USA; Department of Physiology and Biophysics, University of Mississippi Medical Center Jackson, USA; Department of Medicine, University of Mississippi Medical Center Jackson, USA
| |
Collapse
|