1
|
Liu H, Konzen S, Coy A, Rege J, Gomez-Sanchez CE, Rainey WE, Turcu AF. An in Vitro triple screen model for human mineralocorticoid receptor activity. J Steroid Biochem Mol Biol 2024; 243:106568. [PMID: 38866188 DOI: 10.1016/j.jsbmb.2024.106568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/29/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
The mineralocorticoid receptor (MR, NR3C2) mediates ion and water homeostasis in epithelial cells of the distal nephron and other tissues. Aldosterone, the prototypical mineralocorticoid, regulates electrolyte and fluid balance. Cortisol binds to MR with equal affinity to aldosterone, but many MR-expressing tissues inactivate cortisol to cortisone via 11β-hydroxysteroid dehydrogenase type 2 (HSD11B2). Dysregulated MR activation contributes to direct cardiovascular tissue insults. Besides aldosterone and cortisol, a variety of MR agonists and/or HSD11B2 inhibitors are putative players in the pathophysiology of low-renin hypertension (LRH), and cardiovascular and metabolic pathology. We developed an in vitro human MR (hMR) model, to facilitate screening for MR agonists, antagonists, and HSD11B2 inhibitors. The CV1 monkey kidney cells were transduced with lentivirus to stably express hMR and an MR-responsive gaussia luciferase gene. Clonal populations of MR-expressing cells (CV1-MRluc) were further transduced to express HSD11B2 (CV1-MRluc-HSD11B2). CV1-MRluc and CV1-MRluc-HSD11B2 cells were treated with aldosterone, cortisol, 11-deoxycorticosterone (DOC), 18-hydroxycorticosterone (18OHB), 18-hydroxycortisol (18OHF), 18-oxocortisol (18oxoF), progesterone, or 17-hydroxyprogesterone (17OHP). In CV1-MRLuc cells, aldosterone and DOC displayed similar potency (EC50: 0.45 nM and 0.30 nM) and maximal response (31- and 23-fold increase from baseline) on hMR; 18oxoF and 18OHB displayed lower potency (19.6 nM and 56.0 nM, respectively) but similar maximal hMR activation (25- and 27-fold increase, respectively); cortisol and corticosterone exhibited higher maximal responses (73- and 52-fold, respectively); 18OHF showed no MR activation. Progesterone and 17OHP inhibited aldosterone-mediated MR activation. In the MRluc-HSD11B2 model, the EC50 of cortisol for MR activation increased from 20 nM (CV1-MRLuc) to ∼2000 nM, while the EC50 for aldosterone remained unchanged. The addition of 18β-glycyrrhetinic acid (18β-GA), a HSD11B2 inhibitor, restored the potency of cortisol back to ∼70 nM in CV1-hMRLuc-HSD11B2 cells. Together, these two cell models will facilitate the discovery of novel MR-modulators, informing MR-mediated pathophysiology mechanisms and drug development efforts.
Collapse
Affiliation(s)
- Haiping Liu
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, USA
| | - Sonja Konzen
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, USA
| | - Asha Coy
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, USA
| | - Juilee Rege
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Celso E Gomez-Sanchez
- Medical Service, G. V. (Sonny) Montgomery VA Medical Service and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - William E Rainey
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Adina F Turcu
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
2
|
Reisch N, Auchus RJ. Pregnancy in Congenital Adrenal Hyperplasia. Endocrinol Metab Clin North Am 2024; 53:391-407. [PMID: 39084815 DOI: 10.1016/j.ecl.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Over the last several decades, children with all forms of classic congenital adrenal hyperplasia (CAH) are identified early and treated appropriately throughout childhood. As adults, women with CAH may desire to become mothers and their usual chronic therapy and disease control is often inadequate for conception. Subsequently, little data exist on their management during pregnancy. Pregnancy in women with various forms of CAH is possible with appropriate treatment. Achieving pregnancy is more complex than disease management during pregnancy.
Collapse
Affiliation(s)
- Nicole Reisch
- Department of Medicine IV, Institute for Endocrinology, Diabetology & Metabolism, Klinikum der Universität München, Ziemssenstraße 1, München 80336, Germany
| | - Richard J Auchus
- Department of Pharmacology, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, MSRB II, 5560A, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, MSRB II, 5560A, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
Carsote M, Gheorghe AM, Nistor C, Trandafir AI, Sima OC, Cucu AP, Ciuche A, Petrova E, Ghemigian A. Landscape of Adrenal Tumours in Patients with Congenital Adrenal Hyperplasia. Biomedicines 2023; 11:3081. [PMID: 38002081 PMCID: PMC10669095 DOI: 10.3390/biomedicines11113081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Our aim is to update the topic of adrenal tumours (ATs) in congenital adrenal hyperplasia (CAH) based on a multidisciplinary, clinical perspective via an endocrine approach. This narrative review is based on a PubMed search of full-length, English articles between January 2014 and July 2023. We included 52 original papers: 9 studies, 8 case series, and 35 single case reports. Firstly, we introduce a case-based analysis of 59 CAH-ATs cases with four types of enzymatic defects (CYP21A2, CYP17A1, CYP17B1, and HSD3B2). Secondarily, we analysed prevalence studies; their sample size varied from 53 to 26,000 individuals. AT prevalence among CAH was of 13.3-20%. CAH prevalence among individuals with previous imaging diagnosis of AT was of 0.3-3.6%. Overall, this 10-year, sample-based analysis represents one of the most complex studies in the area of CAH-ATs so far. These masses should be taken into consideration. They may reach impressive sizes of up to 30-40 cm, with compressive effects. Adrenalectomy was chosen based on an individual multidisciplinary decision. Many tumours are detected in subjects with a poor disease control, or they represent the first step toward CAH identification. We noted a left lateralization with a less clear pathogenic explanation. The most frequent tumour remains myelolipoma. The risk of adrenocortical carcinoma should not be overlooked. Noting the increasing prevalence of adrenal incidentalomas, CAH testing might be indicated to identify non-classical forms of CAH.
Collapse
Affiliation(s)
- Mara Carsote
- Department of Endocrinology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Clinical Endocrinology Department, C.I. Parhon National Institute of Endocrinology, 020021 Bucharest, Romania; (A.-I.T.); (O.-C.S.); (E.P.); (A.G.)
| | - Ana-Maria Gheorghe
- Clinical Endocrinology Department, C.I. Parhon National Institute of Endocrinology, 020021 Bucharest, Romania; (A.-I.T.); (O.-C.S.); (E.P.); (A.G.)
- Ph.D. Doctoral School of Carol Davila, University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Claudiu Nistor
- Department 4—Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Thoracic Surgery Department, “Dr. Carol Davila” Central Emergency University Military Hospital, 020021 Bucharest, Romania
| | - Alexandra-Ioana Trandafir
- Clinical Endocrinology Department, C.I. Parhon National Institute of Endocrinology, 020021 Bucharest, Romania; (A.-I.T.); (O.-C.S.); (E.P.); (A.G.)
- Ph.D. Doctoral School of Carol Davila, University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Oana-Claudia Sima
- Clinical Endocrinology Department, C.I. Parhon National Institute of Endocrinology, 020021 Bucharest, Romania; (A.-I.T.); (O.-C.S.); (E.P.); (A.G.)
- Ph.D. Doctoral School of Carol Davila, University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Anca-Pati Cucu
- Ph.D. Doctoral School of Carol Davila, University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Thoracic Surgery Department, “Dr. Carol Davila” Central Emergency University Military Hospital, 020021 Bucharest, Romania
| | - Adrian Ciuche
- Department 4—Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Thoracic Surgery Department, “Dr. Carol Davila” Central Emergency University Military Hospital, 020021 Bucharest, Romania
| | - Eugenia Petrova
- Clinical Endocrinology Department, C.I. Parhon National Institute of Endocrinology, 020021 Bucharest, Romania; (A.-I.T.); (O.-C.S.); (E.P.); (A.G.)
- Department of Endocrinology, Faculty of Midwifery and Nursing, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Adina Ghemigian
- Clinical Endocrinology Department, C.I. Parhon National Institute of Endocrinology, 020021 Bucharest, Romania; (A.-I.T.); (O.-C.S.); (E.P.); (A.G.)
- Department of Endocrinology, Faculty of Midwifery and Nursing, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
4
|
Charoensri S, Auchus RJ. Therapeutic management of congenital forms of endocrine hypertension. Eur J Endocrinol 2023; 189:R11-R22. [PMID: 37847213 DOI: 10.1093/ejendo/lvad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/15/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023]
Abstract
Congenital forms of endocrine hypertension are rare and potentially life-threatening disorders, primarily caused by genetic defects affecting adrenal steroid synthesis and activation pathways. These conditions exhibit diverse clinical manifestations, which can be distinguished by their unique molecular mechanisms and steroid profiles. Timely diagnosis and customized management approach are crucial to mitigate unfavorable outcomes associated with uncontrolled hypertension and other related conditions. Treatment options for these disorders depend on the distinct underlying pathophysiology, which involves specific pharmacological therapies or surgical adrenalectomy in some instances. This review article summarizes the current state of knowledge on the therapeutic management of congenital forms of endocrine hypertension, focusing on familial hyperaldosteronism (FH), congenital adrenal hyperplasia, apparent mineralocorticoid excess, and Liddle syndrome. We provide an overview of the genetic and molecular pathogenesis underlying each disorder, describe the clinical features, and discuss the various therapeutic approaches available and their risk of adverse effects, aiming to improve outcomes in patients with these rare and complex conditions.
Collapse
Affiliation(s)
- Suranut Charoensri
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
- Endocrinology & Metabolism Section, Medicine Service, LTC Charles S. Kettles VA Medical Center, Ann Arbor, MI 48104, United States
| |
Collapse
|
5
|
Schröder MAM, Neacşu M, Adriaansen BPH, Sweep FCGJ, Ahmed SF, Ali SR, Bachega TASS, Baronio F, Birkebæk NH, de Bruin C, Bonfig W, Bryce J, Clemente M, Cools M, Elsedfy H, Globa E, Guran T, Güven A, Amr NH, Janus D, Taube NL, Markosyan R, Miranda M, Poyrazoğlu Ş, Rees A, Salerno M, Stancampiano MR, Vieites A, de Vries L, Yavas Abali Z, Span PN, Claahsen-van der Grinten HL. Hormonal control during infancy and testicular adrenal rest tumor development in males with congenital adrenal hyperplasia: a retrospective multicenter cohort study. Eur J Endocrinol 2023; 189:460-468. [PMID: 37837609 DOI: 10.1093/ejendo/lvad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/28/2023] [Accepted: 09/19/2023] [Indexed: 10/16/2023]
Abstract
IMPORTANCE Testicular adrenal rest tumors (TARTs), often found in male patients with congenital adrenal hyperplasia (CAH), are benign lesions causing testicular damage and infertility. We hypothesize that chronically elevated adrenocorticotropic hormone exposure during early life may promote TART development. OBJECTIVE This study aimed to examine the association between commencing adequate glucocorticoid treatment early after birth and TART development. DESIGN AND PARTICIPANTS This retrospective multicenter (n = 22) open cohort study collected longitudinal clinical and biochemical data of the first 4 years of life using the I-CAH registry and included 188 male patients (median age 13 years; interquartile range: 10-17) with 21-hydroxylase deficiency (n = 181) or 11-hydroxylase deficiency (n = 7). All patients underwent at least 1 testicular ultrasound. RESULTS TART was detected in 72 (38%) of the patients. Prevalence varied between centers. When adjusted for CAH phenotype, a delayed CAH diagnosis of >1 year, compared with a diagnosis within 1 month of life, was associated with a 2.6 times higher risk of TART diagnosis. TART onset was not predicted by biochemical disease control or bone age advancement in the first 4 years of life, but increased height standard deviation scores at the end of the 4-year study period were associated with a 27% higher risk of TART diagnosis. CONCLUSIONS AND RELEVANCE A delayed CAH diagnosis of >1 year vs CAH diagnosis within 1 month after birth was associated with a higher risk of TART development, which may be attributed to poor disease control in early life.
Collapse
Affiliation(s)
- Mariska A M Schröder
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboudumc Graduate School, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihaela Neacşu
- Department of Laboratory Medicine, Radboudumc Graduate School, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bas P H Adriaansen
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboudumc Graduate School, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fred C G J Sweep
- Department of Laboratory Medicine, Radboudumc Graduate School, Radboud University Medical Center, Nijmegen, The Netherlands
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, University of Glasgow, Glasgow, United Kingdom
- Office of Rare Conditions, University of Glasgow, Glasgow, United Kingdom
| | - Salma R Ali
- Developmental Endocrinology Research Group, University of Glasgow, Glasgow, United Kingdom
- Office of Rare Conditions, University of Glasgow, Glasgow, United Kingdom
| | - Tânia A S S Bachega
- Laboratory of Hormones and Molecular Genetics-LIM 42, Department of Endocrinology and Metabolism, University of Sao Paulo, Sao Paulo, Brazil
| | - Federico Baronio
- Department Hospital of Woman and Child, Pediatric Unit, IRCCS AOU di Bologna, Policlinico di S.Orsola, Bologna, Italy
| | - Niels Holtum Birkebæk
- Department of Pediatrics and Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Christiaan de Bruin
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Walter Bonfig
- Department of Pediatrics, Technical University Munich, Munich, Germany
- Department of Pediatrics, Klinikum Wels-Grieskirchen, Wels, Austria
| | - Jillian Bryce
- Office of Rare Conditions, University of Glasgow, Glasgow, United Kingdom
| | - Maria Clemente
- Pediatric Endocrinology Unit, Hospital Vall d'Hebron, Autonomous University of Barcelona, CIBERER, Barcelona, Spain
| | - Martine Cools
- Pediatric Endocrinology, Internal Medicine and Pediatric Research Unit, University Hospital Ghent, Ghent University, Ghent, Belgium
| | - Heba Elsedfy
- Pediatrics Department, Ain Shams University, Cairo, Egypt
| | - Evgenia Globa
- Ukrainian Research Center of Endocrine Surgery, Endocrine Organs and Tissue Transplantation, MOH of Ukraine, Kyiv, Ukraine
| | - Tulay Guran
- Pediatric Endocrinology and Diabetes, Marmara University, Istanbul, Turkey
| | - Ayla Güven
- Baskent University Medical Faculty, Istanbul Hospital, Pediatrics Department, Ain Shams University, Cairo, Egypt
| | | | - Dominika Janus
- Department of Pediatric and Adolescent Endocrinology, Institute of Pediatrics, Jagiellonian University Medical College, and Children's University Hospital, Krakow, Poland
| | - Nina Lenherr Taube
- Department of Pediatrics, Division of Endocrinology, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Mirela Miranda
- Laboratory of Hormones and Molecular Genetics-LIM 42, Department of Endocrinology and Metabolism, University of Sao Paulo, Sao Paulo, Brazil
| | - Şükran Poyrazoğlu
- İstanbul Faculty of Medicine, Unit of Pediatric Endocrinology, İstanbul University, İstanbul, Turkey
| | - Aled Rees
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Mariacarolina Salerno
- Pediatric Endocrine Unit, Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Marianna Rita Stancampiano
- Department of Pediatrics, Endocrine Unit, IRCCS San Raffaele Scientific Institute, Endo-ERN Center for Rare Endocrine Conditions, Milan, Italy
| | - Ana Vieites
- Centro de Investigaciones Endocrinológicas Buenos Aires, Buenos Aires, Argentina
| | - Liat de Vries
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel and Felsenstein Medical Research Center at Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zehra Yavas Abali
- Pediatric Endocrinology and Diabetes, Marmara University, Istanbul, Turkey
| | - Paul N Span
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc Graduate School, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
6
|
Reyes AP, León NY, Frost ER, Harley VR. Genetic control of typical and atypical sex development. Nat Rev Urol 2023:10.1038/s41585-023-00754-x. [PMID: 37020056 DOI: 10.1038/s41585-023-00754-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 04/07/2023]
Abstract
Sex development relies on the sex-specific action of gene networks to differentiate the bipotential gonads of the growing fetus into testis or ovaries, followed by the differentiation of internal and external genitalia depending on the presence or absence of hormones. Differences in sex development (DSD) arise from congenital alterations during any of these processes, and are classified depending on sex chromosomal constitution as sex chromosome DSD, 46,XY DSD or 46,XX DSD. Understanding the genetics and embryology of typical and atypical sex development is essential for diagnosing, treating and managing DSD. Advances have been made in understanding the genetic causes of DSD over the past 10 years, especially for 46,XY DSD. Additional information is required to better understand ovarian and female development and to identify further genetic causes of 46,XX DSD, besides congenital adrenal hyperplasia. Ongoing research is focused on the discovery of further genes related to typical and atypical sex development and, therefore, on improving diagnosis of DSD.
Collapse
Affiliation(s)
- Alejandra P Reyes
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Genetics Department, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Nayla Y León
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Emily R Frost
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Vincent R Harley
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.
| |
Collapse
|
7
|
Nicola AG, Carsote M, Gheorghe AM, Petrova E, Popescu AD, Staicu AN, Țuculină MJ, Petcu C, Dascălu IT, Tircă T. Approach of Heterogeneous Spectrum Involving 3beta-Hydroxysteroid Dehydrogenase 2 Deficiency. Diagnostics (Basel) 2022; 12:diagnostics12092168. [PMID: 36140569 PMCID: PMC9497988 DOI: 10.3390/diagnostics12092168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
We aim to review data on 3beta-hydroxysteroid dehydrogenase type II (3βHSD2) deficiency. We identified 30 studies within the last decade on PubMed: 1 longitudinal study (N = 14), 2 cross-sectional studies, 1 retrospective study (N = 16), and 26 case reports (total: 98 individuals). Regarding geographic area: Algeria (N = 14), Turkey (N = 31), China (2 case reports), Morocco (2 sisters), Anatolia (6 cases), and Italy (N = 1). Patients’ age varied from first days of life to puberty; the oldest was of 34 y. Majority forms displayed were salt-wasting (SW); some associated disorders of sexual development (DSD) were attendant also—mostly 46,XY males and mild virilisation in some 46,XX females. SW pushed forward an early diagnosis due to severity of SW crisis. The clinical spectrum goes to: premature puberty (80%); 9 with testicular adrenal rest tumours (TARTs); one female with ovarian adrenal rest tumours (OARTs), and some cases with adrenal hyperplasia; cardio-metabolic complications, including iatrogenic Cushing’ syndrome. More incidental (unusual) associations include: 1 subject with Barter syndrome, 1 Addison’s disease, 2 subjects of Klinefelter syndrome (47,XXY/46,XX, respective 47,XXY). Neonatal screening for 21OHD was the scenario of detection in some cases; 17OHP might be elevated due to peripheral production (pitfall for misdiagnosis of 21OHD). An ACTH stimulation test was used in 2 studies. Liquid chromatography tandem–mass spectrometry unequivocally sustains the diagnostic by expressing high baseline 17OH-pregnenolone to cortisol ratio as well as 11-oxyandrogen levels. HSD3B2 gene sequencing was provided in 26 articles; around 20 mutations were described as “novel pathogenic mutation” (frameshift, missense or nonsense); many subjects had a consanguineous background. The current COVID-19 pandemic showed that CAH-associated chronic adrenal insufficiency is at higher risk. Non-adherence to hormonal replacement contributed to TARTs growth, thus making them surgery candidates. To our knowledge, this is the largest study on published cases strictly concerning 3βHSD2 deficiency according to our methodology. Adequate case management underlines the recent shift from evidence-based medicine to individualized (patient-oriented) medicine, this approach being particularly applicable in this exceptional and challenging disorder.
Collapse
Affiliation(s)
- Andreea Gabriela Nicola
- Department of Oro-Dental Prevention, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mara Carsote
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 011863 Bucharest, Romania
- Department of Endocrinology, C.I. Parhon National Institute of Endocrinology, Aviatorilor Ave 34-38, Sector 1, 011863 Bucharest, Romania
- Correspondence: (M.C.); (A.-M.G.); Tel.: +40-744-851-934 (M.C.)
| | - Ana-Maria Gheorghe
- Department of Endocrinology, C.I. Parhon National Institute of Endocrinology, Aviatorilor Ave 34-38, Sector 1, 011863 Bucharest, Romania
- Correspondence: (M.C.); (A.-M.G.); Tel.: +40-744-851-934 (M.C.)
| | - Eugenia Petrova
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 011863 Bucharest, Romania
- Department of Endocrinology, C.I. Parhon National Institute of Endocrinology, Aviatorilor Ave 34-38, Sector 1, 011863 Bucharest, Romania
| | - Alexandru Dan Popescu
- Department of Endodontics, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Adela Nicoleta Staicu
- Department of Endodontics, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mihaela Jana Țuculină
- Department of Endodontics, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Cristian Petcu
- Department of Endodontics, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ionela Teodora Dascălu
- Department of Orthodontics, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Tiberiu Tircă
- Department of Oro-Dental Prevention, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
8
|
Adriaansen BPH, Schröder MAM, Span PN, Sweep FCGJ, van Herwaarden AE, Claahsen-van der Grinten HL. Challenges in treatment of patients with non-classic congenital adrenal hyperplasia. Front Endocrinol (Lausanne) 2022; 13:1064024. [PMID: 36578966 PMCID: PMC9791115 DOI: 10.3389/fendo.2022.1064024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Congenital adrenal hyperplasia (CAH) due to 21α-hydroxylase deficiency (21OHD) or 11β-hydroxylase deficiency (11OHD) are congenital conditions with affected adrenal steroidogenesis. Patients with classic 21OHD and 11OHD have a (nearly) complete enzyme deficiency resulting in impaired cortisol synthesis. Elevated precursor steroids are shunted into the unaffected adrenal androgen synthesis pathway leading to elevated adrenal androgen concentrations in these patients. Classic patients are treated with glucocorticoid substitution to compensate for the low cortisol levels and to decrease elevated adrenal androgens levels via negative feedback on the pituitary gland. On the contrary, non-classic CAH (NCCAH) patients have more residual enzymatic activity and do generally not suffer from clinically relevant glucocorticoid deficiency. However, these patients may develop symptoms due to elevated adrenal androgen levels, which are most often less elevated compared to classic patients. Although glucocorticoid treatment can lower adrenal androgen production, the supraphysiological dosages also may have a negative impact on the cardiovascular system and bone health. Therefore, the benefit of glucocorticoid treatment is questionable. An individualized treatment plan is desirable as patients can present with various symptoms or may be asymptomatic. In this review, we discuss the advantages and disadvantages of different treatment options used in patients with NCCAH due to 21OHD and 11OHD.
Collapse
Affiliation(s)
- Bas P. H. Adriaansen
- Radboud Institute of Health Sciences, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Pediatric Endocrinology, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mariska A. M. Schröder
- Department of Pediatric Endocrinology, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Paul N. Span
- Radiotherapy & OncoImmunology Laboratory, Radboud Institute of Molecular Life Sciences, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Fred C. G. J. Sweep
- Radboud Institute of Health Sciences, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Antonius E. van Herwaarden
- Radboud Institute of Health Sciences, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hedi L. Claahsen-van der Grinten
- Department of Pediatric Endocrinology, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, Netherlands
- *Correspondence: Hedi L. Claahsen-van der Grinten,
| |
Collapse
|
9
|
Barbot M, Mazzeo P, Lazzara M, Ceccato F, Scaroni C. Metabolic syndrome and cardiovascular morbidity in patients with congenital adrenal hyperplasia. Front Endocrinol (Lausanne) 2022; 13:934675. [PMID: 35979433 PMCID: PMC9376294 DOI: 10.3389/fendo.2022.934675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Since the introduction of glucocorticoid (GC) replacement therapy, congenital adrenal hyperplasia (CAH) is no longer a fatal disease. The development of neonatal screening programs and the amelioration of GC treatment strategies have improved significantly life expectancy in CAH patients. Thanks to these achievements, CAH patients are now in their adulthood, but an increased incidence of cardiovascular risk factors has been reported compared to general population in this stage of life. The aim of CAH treatment is to both prevent adrenal insufficiency and suppress androgen excess; in this delicate balance, under- as well as overtreatment might be equally harmful to long-term cardiovascular health. This work examines the prevalence of metabolic features and cardiovascular events, their correlation with hormone levels and GC replacement regimen in CAH patients and focuses on precocious markers to early detect patients at higher risk and new potential treatment approaches.
Collapse
|