1
|
Zhang Y, Zhao X, Shan L, Liu M, Zhang Z, Wang Z, Zhang X, Meng H, Song Y, Zhang W, Sang Z. Chronic Iodine Intake Excess Damages the Structure of Articular Cartilage and Epiphyseal Growth Plate. Biol Trace Elem Res 2024; 202:4078-4086. [PMID: 38060174 DOI: 10.1007/s12011-023-03985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
This study aimed to explore the influence of excess iodine on the articular cartilage and epiphyseal growth plate in rats. Wistar rats (n = 200) were randomly divided into five groups with 40 rats in each: normal iodine (NI), 5-fold high iodine group (5HI), 10-fold high iodine group (10HI), 50-fold high iodine group (50HI), and 100-fold high iodine group (100HI). The rats were executed in 6 and 12 months. 24-h urinary iodine concentration (UIC) was monitored by arsenic-cerium catalytic spectrophotometry. The chemiluminescence method was used to determine the thyroid function. The pathological changes in the epiphyseal plate, articular cartilage, and thickness of the epiphyseal plate were observed. The mRNA expression of collagen II (ColII), collagen X, matrix metalloproteinase-13 (MMP-13), and fibroblast growth factor receptor 1 in articular chondrocytes was detected by RT-PCR. 24-h UIC increased as iodine intake increased. In the 12th month, there was a significant increase in serum sTSH and a decrease in serum FT4 in HI groups, compared to the NI group. There was a decrease in the number of proliferating cells in the epiphyseal plate and an increase in the number of mast cell layers. The chondrocytes appeared disorganized, and the tidal lines were disturbed or even broken. Growth plate thickness decreased with increasing iodine intake. Compared with the NI group, ColII and MMP-13 mRNA expression in chondrocytes in all HI groups significantly increased. Chronic iodine overdose increases the risk of hypothyroidism. Chronic iodine overdose leads to abnormal morphology of epiphyseal growth plates and articular cartilage, increasing the risk of osteoarthritis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Key Laboratory of Environmental Nutrition and Population Health, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Xin Zhao
- Department of Hand Microsurgery, Tianjin Hospital, Tianjin, China
| | - Le Shan
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Key Laboratory of Environmental Nutrition and Population Health, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Miao Liu
- Department of Comprehensive Office, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin, China
| | - Zixuan Zhang
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun City, China
| | - Zeji Wang
- Department of Medical Technology, Clinical Medical College of Tianjin Medical University, Tianjin, China
| | - Xinbao Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Key Laboratory of Environmental Nutrition and Population Health, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Haohao Meng
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Key Laboratory of Environmental Nutrition and Population Health, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Yan Song
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Key Laboratory of Environmental Nutrition and Population Health, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Wanqi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Key Laboratory of Environmental Nutrition and Population Health, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Zhongna Sang
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Key Laboratory of Environmental Nutrition and Population Health, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.
| |
Collapse
|
2
|
Zecca PA, Reguzzoni M, Borgese M, Protasoni M, Filibian M, Raspanti M. Investigating the interfaces of the epiphyseal plate: An integrated approach of histochemistry, microtomography and SEM. J Anat 2023; 243:870-877. [PMID: 37391907 PMCID: PMC10557393 DOI: 10.1111/joa.13924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/24/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
We investigated the interfaces of the epiphyseal plate with over- and underlying bone segments using an integrated approach of histochemistry, microtomography and scanning electron microscopy (SEM) to overcome the inherent limitations of sections-based techniques. Microtomography was able to provide an unobstructed, frontal view of large expanses of the two bone surfaces facing the growth plate, while SEM observation after removal of the soft matrix granted an equally unhindered access with a higher resolution. The two interfaces appeared widely dissimilar. On the diaphyseal side the hypertrophic chondrocytes were arranged in tall columns packed in a sort of compact palisade; the interposed extracellular matrix was actively calcifying into a thick mineralized crust growing towards the epiphysis. Behind the mineralization front, histochemical data revealed a number of surviving cartilage islets which were being slowly remodelled into bone. In contrast, the epiphyseal side of the cartilage consisted of a relatively quiescent reserve zone whose mineralization was marginal in amount and discontinuous in extension; the epiphyseal bone consisted of a loose trabecular meshwork, with ample vascular spaces opening directly into the non-mineralized cartilage. On both sides the calcification process took place through the formation of spheroidal bodies 1-2 μm wide which gradually grew by apposition and coalesced into a solid mass, in a way distinctly different from that of bone and other calcified tissues.
Collapse
Affiliation(s)
| | | | - Marina Borgese
- Department of Medicine & SurgeryInsubria UniversityVareseItaly
| | | | - Marta Filibian
- Centro Grandi StrumentiUniversity of PaviaPaviaItaly
- Istituto Nazionale di Fisica Nucleare, Pavia UnitPaviaItaly
| | - Mario Raspanti
- Department of Medicine & SurgeryInsubria UniversityVareseItaly
| |
Collapse
|
3
|
Tiffany AS, Harley BAC. Growing Pains: The Need for Engineered Platforms to Study Growth Plate Biology. Adv Healthc Mater 2022; 11:e2200471. [PMID: 35905390 PMCID: PMC9547842 DOI: 10.1002/adhm.202200471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/11/2022] [Indexed: 01/27/2023]
Abstract
Growth plates, or physis, are highly specialized cartilage tissues responsible for longitudinal bone growth in children and adolescents. Chondrocytes that reside in growth plates are organized into three distinct zones essential for proper function. Modeling key features of growth plates may provide an avenue to develop advanced tissue engineering strategies and perspectives for cartilage and bone regenerative medicine applications and a platform to study processes linked to disease progression. In this review, a brief introduction of the growth plates and their role in skeletal development is first provided. Injuries and diseases of the growth plates as well as physiological and pathological mechanisms associated with remodeling and disease progression are discussed. Growth plate biology, namely, its architecture and extracellular matrix organization, resident cell types, and growth factor signaling are then focused. Next, opportunities and challenges for developing 3D biomaterial models to study aspects of growth plate biology and disease in vitro are discussed. Finally, opportunities for increasingly sophisticated in vitro biomaterial models of the growth plate to study spatiotemporal aspects of growth plate remodeling, to investigate multicellular signaling underlying growth plate biology, and to develop platforms that address key roadblocks to in vivo musculoskeletal tissue engineering applications are described.
Collapse
Affiliation(s)
- Aleczandria S. Tiffany
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Brendan A. C. Harley
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
4
|
Anterior Transarticular Crossing Screw Placement for Atlantoaxial Instability in Children: Computed Tomography-Based Study. World Neurosurg 2022; 161:e192-e198. [PMID: 35183796 DOI: 10.1016/j.wneu.2022.01.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The feasibility of anterior transarticular crossing screw (ATCS) fixation for atlantoaxial instability was confirmed in adults. However, atlantoaxial instability is more common in children. Therefore this study was aimed to ascertain the pediatric morphometric characteristics of ATCS in C1-2. METHODS Morphometric analysis was conducted on computed tomography scan in 87 pediatric patients who were divided into groups based on ages (1-6 years, 7-10 years, and 11-16 years). Measurements were taken in sagittal and axial planes of computed tomography imaging to determine the range of screw lateral angles, incline angles, and screw lengths. RESULTS The overall screw lengths were relatively longer in males than females. For those aged 1-6 years, the screw lengths were 25.5-32.8 mm in males and 24.2-31.3 mm in females, respectively. The screw lengths showed no difference in the 7- to 10-year group between sexes, while the incline angle was larger in females than males. And the screw lengths were 33.5-43.2 mm in males and 31.2-40.4 mm in females in the 11- to 16-year group. The screw lengths were increased with age, yet the lateral angles were decreased. We also found that the epiphyseal closure of odontoid reached 93.6% when the age was older than 7 years old. Therefore ATCS was recommended for children older than 7 years. CONCLUSIONS The overall screw lengths and lateral angles of ATCS were larger in male children than those in females, but the incline angles were larger in females. ATCS is feasible in children, particularly those aged 7 years or older.
Collapse
|
5
|
Wang X, Guan Y, Xiang S, Clark KL, Alexander PG, Simonian LE, Deng Y, Lin H. Role of Canonical Wnt/β-Catenin Pathway in Regulating Chondrocytic Hypertrophy in Mesenchymal Stem Cell-Based Cartilage Tissue Engineering. Front Cell Dev Biol 2022; 10:812081. [PMID: 35141220 PMCID: PMC8820467 DOI: 10.3389/fcell.2022.812081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/06/2022] [Indexed: 01/14/2023] Open
Abstract
In the past 3 decades, the cartilage repair potential of mesenchymal stromal cells, or mesenchymal stem cells (MSCs), has been widely examined in animal studies. Unfortunately, the phenotype and physical properties of MSC-derived cartilage tissue are not comparable to native hyaline cartilage. In particular, chondrocytic hypertrophy, a phenotype that is not observed in healthy hyaline cartilage, is concomitant with MSC chondrogenesis. Given that hypertrophic chondrocytes potentially undergo apoptosis or convert into osteoblasts, this undesired phenotype needs to be prevented or minimized before MSCs can be used to repair cartilage injuries in the clinic. In this review, we first provide an overview of chondrocytic hypertrophy and briefly summarize current methods for suppressing hypertrophy in MSC-derived cartilage. We then highlight recent progress on modulating the canonical Wnt/β-catenin pathway for inhibiting hypertrophy. Specially, we discuss the potential crosstalk between Wnt/β-catenin with other pathways in regulating hypertrophy. Lastly, we explore future perspectives to further understand the role of Wnt/β-catenin in chondrocytic hypertrophy.
Collapse
Affiliation(s)
- Xueqi Wang
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yiming Guan
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shiyu Xiang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Karen L. Clark
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Peter G. Alexander
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lauren E. Simonian
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yuhao Deng
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Hang Lin, ; Yuhao Deng,
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- *Correspondence: Hang Lin, ; Yuhao Deng,
| |
Collapse
|
6
|
Paradise CR, Galvan ML, Pichurin O, Jerez S, Kubrova E, Dehghani SS, Carrasco ME, Thaler R, Larson AN, van Wijnen AJ, Dudakovic A. Brd4 is required for chondrocyte differentiation and endochondral ossification. Bone 2022; 154:116234. [PMID: 34700039 PMCID: PMC9014208 DOI: 10.1016/j.bone.2021.116234] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023]
Abstract
Differentiation of multi-potent mesenchymal stromal cells (MSCs) is directed by the activities of lineage-specific transcription factors and co-factors. A subset of these proteins controls the accessibility of chromatin by recruiting histone acetyl transferases or deacetylases that regulate acetylation of the N-termini of H3 and H4 histone proteins. Bromodomain (BRD) proteins recognize these acetylation marks and recruit the RNA pol II containing transcriptional machinery. Our previous studies have shown that Brd4 is required for osteoblast differentiation in vitro. Here, we investigated the role of Brd4 on endochondral ossification in C57BL/6 mice and chondrogenic differentiation in cell culture models. Conditional loss of Brd4 in the mesenchyme (Brd4 cKO, Brd4fl/fl: Prrx1-Cre) yields smaller mice that exhibit alteration in endochondral ossification. Importantly, abnormal growth plate morphology and delayed long bone formation is observed in juvenile Brd4 cKO mice. One week old Brd4 cKO mice have reduced proliferative and hypertrophic zones within the physis and exhibit a delay in the formation of the secondary ossification center. At the cellular level, Brd4 function is required for chondrogenic differentiation and maturation of both ATDC5 cells and immature mouse articular chondrocytes. Mechanistically, Brd4 loss suppresses Sox9 levels and reduces expression of Sox9 and Runx2 responsive endochondral genes (e.g., Col2a1, Acan, Mmp13 and Sp7/Osx). Collectively, our results indicate that Brd4 is a key epigenetic regulator required for normal chondrogenesis and endochondral ossification.
Collapse
Affiliation(s)
- Christopher R Paradise
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - M Lizeth Galvan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Oksana Pichurin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Sofia Jerez
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Eva Kubrova
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - A Noelle Larson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT, USA; Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands.
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
7
|
Wang B, Jiang B, Li Y, Dai Y, Li P, Li L, Xu J, Li L, Wu P. AKAP2 overexpression modulates growth plate chondrocyte functions through ERK1/2 signaling. Bone 2021; 146:115875. [PMID: 33571699 DOI: 10.1016/j.bone.2021.115875] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/02/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
In our previous study, the mutation c.2645A > C (p. E882A) was found in the A-Kinase Anchoring Protein 2 (AKAP2) gene, which plays an important role in regulating the development of the skeletal system; however, the specific effect of AKAP2 on chondrocyte proliferation and differentiation and the potential mechanism are still not clear. In the present study, we investigated the effect of AKAP2 in vitro. We successfully isolated human growth plate chondrocytes (GPCs) from growth plate cartilage tissues and identified GPCs by aggrecan expression and flow cytometric analysis. AKAP2 overexpression significantly promoted GPC proliferation, enhanced GPC differentiation, and promoted extracellular matrix (ECM) synthesis, whereas AKAP2 silencing exerted the opposite effects on GPCs. AKAP2 overexpression increased, while AKAP2 silencing decreased, the protein levels of p-extracellular regulated protein kinases (ERK)1/2. More importantly, the promotive effects of AKAP2 overexpression on GPC proliferation, differentiation, and ECM synthesis were significantly reversed by the ERK1/2 signaling antagonist U0126, suggesting that AKAP2 enhances GPC functions through ERK1/2 signaling. In conclusion, we demonstrate AKAP2 overexpression-induced enhancement of GPC functions through ERK1/2 signaling. Considering the critical role of GPC functions in adolescent idiopathic scoliosis (AIS) pathogenesis, the application of AKAP2 targeting in AIS treatment should be investigated in future studies.
Collapse
Affiliation(s)
- Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, China
| | - Bin Jiang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, China
| | - Yawei Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, China.
| | - Yuliang Dai
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, China
| | - Pengzhi Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, China
| | - Lei Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, China
| | - Jietao Xu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, China
| | - Li Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, China
| | - Pengfei Wu
- Center for Medical Genetics, School of Life Sciences, Central South University, China
| |
Collapse
|
8
|
Nossin Y, Farrell E, Koevoet WJLM, Somoza RA, Caplan AI, Brachvogel B, van Osch GJVM. Angiogenic Potential of Tissue Engineered Cartilage From Human Mesenchymal Stem Cells Is Modulated by Indian Hedgehog and Serpin E1. Front Bioeng Biotechnol 2020; 8:327. [PMID: 32363188 PMCID: PMC7180203 DOI: 10.3389/fbioe.2020.00327] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/25/2020] [Indexed: 12/26/2022] Open
Abstract
With rising demand for cartilage tissue repair and replacement, the differentiation of mesenchymal stem cells (BMSCs) into cartilage tissue forming cells provides a promising solution. Often, the BMSC-derived cartilage does not remain stable and continues maturing to bone through the process of endochondral ossification in vivo. Similar to the growth plate, invasion of blood vessels is an early hallmark of endochondral ossification and a necessary step for completion of ossification. This invasion originates from preexisting vessels that expand via angiogenesis, induced by secreted factors produced by the cartilage graft. In this study, we aimed to identify factors secreted by chondrogenically differentiated bone marrow-derived human BMSCs to modulate angiogenesis. The secretome of chondrogenic pellets at day 21 of the differentiation program was collected and tested for angiogenic capacity using in vitro endothelial migration and proliferation assays as well as the chick chorioallantoic membrane (CAM) assay. Taken together, these assays confirmed the pro-angiogenic potential of the secretome. Putative secreted angiogenic factors present in this medium were identified by comparative global transcriptome analysis between murine growth plate cartilage, human chondrogenic BMSC pellets and human neonatal articular cartilage. We then verified by PCR eight candidate angiogenesis modulating factors secreted by differentiated BMSCs. Among those, Serpin E1 and Indian Hedgehog (IHH) had a higher level of expression in BMSC-derived cartilage compared to articular chondrocyte derived cartilage. To understand the role of these factors in the pro-angiogenic secretome, we used neutralizing antibodies to functionally block them in the conditioned medium. Here, we observed a 1.4-fold increase of endothelial cell proliferation when blocking IHH and 1.5-fold by Serpin E1 blocking compared to unblocked control conditioned medium. Furthermore, endothelial migration was increased 1.9-fold by Serpin E1 blocking and 2.7-fold by IHH blocking. This suggests that the pro-angiogenic potential of chondrogenically differentiated BMSC secretome could be further augmented through inhibition of specific factors such as IHH and Serpin E1 identified as anti-angiogenic factors.
Collapse
Affiliation(s)
- Yannick Nossin
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Wendy J L M Koevoet
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Rodrigo A Somoza
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, OH, United States.,Center for Multimodal Evaluation of Engineered-Cartilage, Case Western Reserve University, Cleveland, OH, United States
| | - Arnold I Caplan
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, OH, United States.,Center for Multimodal Evaluation of Engineered-Cartilage, Case Western Reserve University, Cleveland, OH, United States
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Faculty of Medicine, Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Gerjo J V M van Osch
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Department of Orthopedics, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
9
|
Manor J, Lalani SR. Overgrowth Syndromes-Evaluation, Diagnosis, and Management. Front Pediatr 2020; 8:574857. [PMID: 33194904 PMCID: PMC7661798 DOI: 10.3389/fped.2020.574857] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
Abnormally excessive growth results from perturbation of a complex interplay of genetic, epigenetic, and hormonal factors that orchestrate human growth. Overgrowth syndromes generally present with inherent health concerns and, in some instances, an increased risk of tumor predisposition that necessitate prompt diagnosis and appropriate referral. In this review, we introduce some of the more common overgrowth syndromes, along with their molecular mechanisms, diagnostics, and medical complications for improved recognition and management of patients affected with these disorders.
Collapse
Affiliation(s)
- Joshua Manor
- Department of Molecular Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Seema R Lalani
- Department of Molecular Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
10
|
Recent Insights into Long Bone Development: Central Role of Hedgehog Signaling Pathway in Regulating Growth Plate. Int J Mol Sci 2019; 20:ijms20235840. [PMID: 31757091 PMCID: PMC6928971 DOI: 10.3390/ijms20235840] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/30/2022] Open
Abstract
The longitudinal growth of long bone, regulated by an epiphyseal cartilaginous component known as the “growth plate”, is generated by epiphyseal chondrocytes. The growth plate provides a continuous supply of chondrocytes for endochondral ossification, a sequential bone replacement of cartilaginous tissue, and any failure in this process causes a wide range of skeletal disorders. Therefore, the cellular and molecular characteristics of the growth plate are of interest to many researchers. Hedgehog (Hh), well known as a mitogen and morphogen during development, is one of the best known regulatory signals in the developmental regulation of the growth plate. Numerous animal studies have revealed that signaling through the Hh pathway plays multiple roles in regulating the proliferation, differentiation, and maintenance of growth plate chondrocytes throughout the skeletal growth period. Furthermore, over the past few years, a growing body of evidence has emerged demonstrating that a limited number of growth plate chondrocytes transdifferentiate directly into the full osteogenic and multiple mesenchymal lineages during postnatal bone development and reside in the bone marrow until late adulthood. Current studies with the genetic fate mapping approach have shown that the commitment of growth plate chondrocytes into the skeletal lineage occurs under the influence of epiphyseal chondrocyte-derived Hh signals during endochondral bone formation. Here, we discuss the valuable observations on the role of the Hh signaling pathway in the growth plate based on mouse genetic studies, with some emphasis on recent advances.
Collapse
|
11
|
Paradise CR, Galeano-Garces C, Galeano-Garces D, Dudakovic A, Milbrandt TA, Saris DBF, Krych AJ, Karperien M, Ferguson GB, Evseenko D, Riester SM, van Wijnen AJ, Larson AN. Molecular characterization of physis tissue by RNA sequencing. Gene 2018; 668:87-96. [PMID: 29775757 PMCID: PMC5994380 DOI: 10.1016/j.gene.2018.05.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 12/15/2022]
Abstract
The physis is a well-established and anatomically distinct cartilaginous structure that is crucial for normal long-bone development and growth. Abnormalities in physis function are linked to growth plate disorders and other pediatric musculoskeletal diseases. Understanding the molecular pathways operative in the physis may permit development of regenerative therapies to complement surgically-based procedures that are the current standard of care for growth plate disorders. Here, we performed next generation RNA sequencing on mRNA isolated from human physis and other skeletal tissues (e.g., articular cartilage and bone; n = 7 for each tissue). We observed statistically significant enrichment of gene sets in the physis when compared to the other musculoskeletal tissues. Further analysis of these upregulated genes identified physis-specific networks of extracellular matrix proteins including collagens (COL2A1, COL6A1, COL9A1, COL14A1, COL16A1) and matrilins (MATN1, MATN2, MATN3), and signaling proteins in the WNT pathway (WNT10B, FZD1, FZD10, DKK2) or the FGF pathway (FGF10, FGFR4). Our results provide further insight into the gene expression networks that contribute to the physis' unique structural composition and regulatory signaling networks. Physis-specific expression profiles may guide ongoing initiatives in tissue engineering and cell-based therapies for treatment of growth plate disorders and growth modulation therapies. Furthermore, our findings provide new leads for therapeutic drug discovery that would permit future intervention through pharmacological rather than surgical strategies.
Collapse
Affiliation(s)
- Christopher R Paradise
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Catalina Galeano-Garces
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands
| | | | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Todd A Milbrandt
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Daniel B F Saris
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands; Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Aaron J Krych
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Sports Medicine, Mayo Clinic, Rochester, MN, USA
| | - Marcel Karperien
- Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands
| | - Gabriel B Ferguson
- Department of Orthopaedic Surgery, University of Southern California (USC), Los Angeles, CA, USA
| | - Denis Evseenko
- Department of Orthopaedic Surgery, University of Southern California (USC), Los Angeles, CA, USA
| | - Scott M Riester
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Andre J van Wijnen
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - A Noelle Larson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
12
|
Shiguetomi-Medina JM, Møller-Madsen B, Rahbek O. Physeal histological morphology after thermal epiphysiodesis using radiofrequency ablation. J Orthop Traumatol 2016; 18:121-126. [PMID: 27709362 PMCID: PMC5429251 DOI: 10.1007/s10195-016-0430-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 09/22/2016] [Indexed: 12/03/2022] Open
Abstract
Background Several treatments have been described for leg length discrepancy. Epiphysiodesis is the most commonly used because of its effectiveness. Thermal epiphysiodesis using radiofrequency ablation (RFA) alters the growth plate morphology without damaging the adjacent articular cartilage; it is a minimally invasive method that has shown excellent results in animal models. This study describes the macro and micro morphology after the procedure. Materials and methods Epiphysiodesis using RFA was performed in vivo for 8 min (92–98 °C) at two ablation sites (medial and lateral) in one randomly-selected tibia in eight growing pigs. The contralateral tibia was used as control. After 12 weeks, the pigs were killed and the tibiae harvested. The specimens were studied macroscopically and histology samples were obtained. Physeal morphology, thickness and characteristics were then described. Results Macroscopically, the articular cartilage was normal in all the treated tibiae. Microscopically, the physis was detected as a discontinuous line on the treated tibiae while it was continuous in all controls. In the control specimens, the mean thickness of the physis was 625 µm (606–639, SD = 14). All the physeal layers were organized. In the ablated specimens, disorganized layers in a heterogeneous line were observed. Bone bridges were identified at the ablation sites. The central part of the physis looked normal. Next to the bone bridge, the physis was thicker and presented fibrosis. The mean thickness was 820 µm (628–949, SD = 130). No abnormalities in the articular cartilage were observed. Conclusions Thermal epiphysiodesis with RFA disrupts the physeal morphology and causes the formation of bone bridges at the ablation sites. This procedure does not damage the adjacent articular cartilage. The damaged tissue, next to the bone bridges, is characterized by disorganization and fibrosis.
Collapse
Affiliation(s)
- Juan Manuel Shiguetomi-Medina
- Orthopaedics Research Laboratory, Aarhus University Hospital, Noerrebrogade 44, 8000, Aarhus C, Denmark. .,Department of Children's Orthopaedics, Aarhus University Hospital, Noerrebrogade 44, 8000, Aarhus C, Denmark.
| | - B Møller-Madsen
- Department of Children's Orthopaedics, Aarhus University Hospital, Noerrebrogade 44, 8000, Aarhus C, Denmark
| | - O Rahbek
- Department of Children's Orthopaedics, Aarhus University Hospital, Noerrebrogade 44, 8000, Aarhus C, Denmark
| |
Collapse
|
13
|
Haq SH. 5-Aza-2'-deoxycytidine acts as a modulator of chondrocyte hypertrophy and maturation in chick caudal region chondrocytes in culture. Anat Cell Biol 2016; 49:107-15. [PMID: 27382512 PMCID: PMC4927425 DOI: 10.5115/acb.2016.49.2.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/20/2016] [Accepted: 04/06/2016] [Indexed: 01/08/2023] Open
Abstract
This study was carried out to explore the effect of DNA hypomethylation on chondrocytes phenotype, in particular the effect on chondrocyte hypertrophy, maturation, and apoptosis. Chondrocytes derived from caudal region of day 17 embryonic chick sterna were pretreated with hypomethylating drug 5-aza-2'-deoxycytidine for 48 hours and then maintained in the normal culture medium for up to 14 days. Histological studies showed distinct morphological changes occurred in the pretreated cultures when compared to the control cultures. The pretreated chondrocytes after 7 days in culture became bigger in size and acquired more flattened fibroblastic phenotype as well as a loss of cartilage specific extracellular matrix. Scanning electron microscopy at day 7 showed chondrocytes to have increased in cell volume and at day 14 in culture the extracellular matrix of the pretreated cultures showed regular fibrillar structure heavily embedded with matrix vesicles, which is the characteristic feature of chondrocyte hypertrophy. Transmission electron microscopic studies indicated the terminal fate of the hypertrophic cells in culture. The pretreated chondrocytes grown for 14 days in culture showed two types of cells: dark cells which had condense chromatin in dark patches and dark cytoplasm. The other light chondrocytes appeared to be heavily loaded with endoplasmic reticulum indicative of very active protein and secretory activity; their cytoplasm had large vacuoles and disintegrating cytoplasm. The biosynthetic profile showed that the pretreated cultures were actively synthesizing and secreting type X collagen and alkaline phosphatase as a major biosynthetic product.
Collapse
Affiliation(s)
- Samina Hyder Haq
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Desjardin C, Charles C, Benoist-Lasselin C, Riviere J, Gilles M, Chassande O, Morgenthaler C, Laloé D, Lecardonnel J, Flamant F, Legeai-Mallet L, Schibler L. Chondrocytes play a major role in the stimulation of bone growth by thyroid hormone. Endocrinology 2014; 155:3123-35. [PMID: 24914940 DOI: 10.1210/en.2014-1109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroid hormone (T3) is required for postnatal skeletal growth. It exerts its effect by binding to nuclear receptors, TRs including TRα1 and TRβ1, which are present in most cell types. These cell types include chondrocytes and osteoblasts, the interactions of which are known to regulate endochondral bone formation. In order to analyze the respective functions of T3 stimulation in chondrocytes and osteoblasts during postnatal growth, we use Cre/loxP recombination to express a dominant-negative TRα1(L400R) mutant receptor in a cell-specific manner. Phenotype analysis revealed that inhibiting T3 response in chondrocytes is sufficient to reproduce the defects observed in hypothyroid mice, not only for cartilage maturation, but also for ossification and mineralization. TRα1(L400R) in chondrocytes also results in skull deformation. In the meantime, TRα1(L400R) expression in mature osteoblasts has no visible effect. Transcriptome analysis identifies a number of changes in gene expression induced by TRα1(L400R) in cartilage. These changes suggest that T3 normally cross talks with several other signaling pathways to promote chondrocytes proliferation, differentiation, and skeletal growth.
Collapse
Affiliation(s)
- Clémence Desjardin
- Institut National de la Recherche Agronomique (INRA) (C.D., J.R., M.G., C.M., D.L., J.L., L.S.), UMR1313, Biologie Intégrative et Génétique Animale, Jouy-en-Josas, France; Centre National de la Recherche Scientifique (CNRS) UMR 5242 (C.C.), ENS Lyon, Institut de Génomique Fonctionnelle, Université de Lyon, Lyon, France; Institut Imagine (C.B.-L., L.L.-G.) Institut National de la Santé et de la Recherche Medicale, U1163, Université Paris Descartes, 75015 Paris, France; University of Bordeaux (O.C.), U1026, Bioingénierie Tissulaire, Bordeaux, France; and Institut de Génomique Fonctionnelle de Lyon (F.F.), Université de Lyon, CNRS, INRA, École Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
PTHrP was identified as a cause of hypercalcemia in cancer patients 25 yr ago. In the intervening years, we have learned that PTHrP and PTH are encoded by related genes that are part of a larger "PTH gene family." This evolutionary relationship permits them to bind to the same type 1 PTH/PTHrP receptor, which explains why humoral hypercalcemia of malignancy resembles hyperparathyroidism. This review will outline basic facts about PTHrP biology and its normal physiological functions, with an emphasis on new findings of the past 5-10 yr. The medical and research communities first became aware of PTHrP because of its involvement in a common paraneoplastic syndrome. Now, research into the basic biology of PTHrP has suggested previously unrecognized connections to a variety of disease states such as osteoporosis, osteoarthritis, and breast cancer and has highlighted how PTHrP itself might be used in therapy for osteoporosis and diabetes. Therefore, the story of this remarkable protein is a paradigm for translational research, having gone from bedside to bench and now back to bedside.
Collapse
Affiliation(s)
- John J Wysolmerski
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, TAC S131, Box 208020, New Haven, Connecticut 06520-8020, USA.
| |
Collapse
|