1
|
Gorreja F, Bendix M, Rush STA, Maasfeh L, Savolainen O, Dige A, Agnholt J, Öhman L, Magnusson MK. Fecal Supernatants from Patients with Crohn's Disease Induce Inflammatory Alterations in M2 Macrophages and Fibroblasts. Cells 2023; 13:60. [PMID: 38201264 PMCID: PMC10777926 DOI: 10.3390/cells13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Intestinal macrophages and fibroblasts act as microenvironmental sentinels mediating inflammation and disease progression in Crohn's disease (CD). We aimed to establish the effects of fecal supernatants (FSs) from patients with CD on macrophage and fibroblast phenotype and function. FS were obtained by ultracentrifugation, and the metabolites were analyzed. Monocyte-derived M2 macrophages and fibroblasts were conditioned with FS, and secreted proteins, surface proteins and gene expression were analyzed. M2 macrophage efferocytosis was evaluated. Patients with CD (n = 15) had a skewed fecal metabolite profile compared to healthy subjects (HS, n = 10). FS from CD patients (CD-FS) induced an anti-inflammatory response in M2 macrophages with higher expression of IL-10, IL1RA and CD206 as compared to healthy FS (HS-FS) while the efferocytotic capacity was unaltered. CD-FS did not affect extracellular matrix production from fibroblasts, but increased expression of the pro-inflammatory proteins IL-6 and MCP-1. Conditioned media from M2 macrophages treated with CD-FS modulated gene expression in fibroblasts for TGFβ superfamily members and reduced IL-4 expression compared to HS-FS. We show that M2 macrophages and fibroblasts react abnormally to the fecal microenvironment of CD patients, resulting in altered protein expression related to inflammation but not fibrosis. This implies that the gut microbiota and its metabolites have an important role in the generation and/or perpetuation of inflammation in CD.
Collapse
Affiliation(s)
- Frida Gorreja
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (F.G.); (S.T.A.R.); (L.M.); (L.Ö.)
| | - Mia Bendix
- Medical Department, Randers Regional Hospital, 8930 Randers, Denmark;
| | - Stephen T. A. Rush
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (F.G.); (S.T.A.R.); (L.M.); (L.Ö.)
| | - Lujain Maasfeh
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (F.G.); (S.T.A.R.); (L.M.); (L.Ö.)
| | - Otto Savolainen
- Chalmers Mass Spectrometry Infrastructure, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden;
| | - Anders Dige
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, 8200 Aarhus, Denmark; (A.D.); (J.A.)
| | - Jorgen Agnholt
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, 8200 Aarhus, Denmark; (A.D.); (J.A.)
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (F.G.); (S.T.A.R.); (L.M.); (L.Ö.)
| | - Maria K. Magnusson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (F.G.); (S.T.A.R.); (L.M.); (L.Ö.)
| |
Collapse
|
2
|
Food and Gut Microbiota-Derived Metabolites in Nonalcoholic Fatty Liver Disease. Foods 2022; 11:foods11172703. [PMID: 36076888 PMCID: PMC9455821 DOI: 10.3390/foods11172703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Diet and lifestyle are crucial factors that influence the susceptibility of humans to nonalcoholic fatty liver disease (NAFLD). Personalized diet patterns chronically affect the composition and activity of microbiota in the human gut; consequently, nutrition-related dysbiosis exacerbates NAFLD via the gut–liver axis. Recent advances in diagnostic technology for gut microbes and microbiota-derived metabolites have led to advances in the diagnosis, treatment, and prognosis of NAFLD. Microbiota-derived metabolites, including tryptophan, short-chain fatty acid, fat, fructose, or bile acid, regulate the pathophysiology of NAFLD. The microbiota metabolize nutrients, and metabolites are closely related to the development of NAFLD. In this review, we discuss the influence of nutrients, gut microbes, their corresponding metabolites, and metabolism in the pathogenesis of NAFLD.
Collapse
|
3
|
Zheng X, Liu L, Meng G, Zhu S, Zhou R, Jiang W. IL-18 maintains the homeostasis of mucosal immune system via inflammasome-independent but microbiota-dependent manner. Sci Bull (Beijing) 2021; 66:2115-2123. [PMID: 36654269 DOI: 10.1016/j.scib.2021.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/10/2020] [Accepted: 01/15/2021] [Indexed: 02/03/2023]
Abstract
Inflammasomes and their product interleukin 18 (IL-18) play important roles in gut microbiota monitoring and homeostasis, and their loss of function could lead to microbiota dysbiosis and accelerate disease progression. However, the impacts of the resulting microbiota dysbiosis on the mucosal immune system are largely unknown. Here, we show that dysbiotic microbiota from Il18-/- mice induced immune cell loss in the small intestine (SI) in an inflammasome-independent manner. Cohousing experiments revealed that the immunotoxic phenotype of these microbiota was transferable to wild type (WT) mice and induced immune cell death through the receptor-interacting protein kinase 3 (RIP3)-mixed lineage kinase domain like pseudokinase (MLKL) pathway. Analysis of microbiota composition identified two types of bacteria at the genus level, Ureaplasma and Parasutterella, that accumulated in Il18-/- mice and negatively mediated changes in immune cells in the SI. Furthermore, dysbiosis in Il18-/- mice also contributed to increased susceptibility to Listeria infection. Collectively, our results demonstrate that IL-18 is essential to microbiota homeostasis and that dysbiotic microbiota could significantly shape the landscape of the immune system.
Collapse
Affiliation(s)
- Xuesen Zheng
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Lei Liu
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Guangxun Meng
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shu Zhu
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Rongbin Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; CAS Center for Excellence in Cell and Molecular Biology, University of Science and Technology of China, Hefei 230027, China.
| | - Wei Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
4
|
Liao Y, Xu J, Qin B, Shi J, Qin C, Xie F, Ou S, Tang J, Wang W, Wu F, Bai L. Advanced oxidation protein products impair autophagic flux in macrophage by inducing lysosomal dysfunction via activation of PI3K-Akt-mTOR pathway in Crohn's disease. Free Radic Biol Med 2021; 172:33-47. [PMID: 34029692 DOI: 10.1016/j.freeradbiomed.2021.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/26/2021] [Accepted: 05/08/2021] [Indexed: 12/14/2022]
Abstract
Dysfunction in macrophages is involved in the pathogenesis of various diseases, including Crohn's disease (CD). Previously, we found that advanced oxidation protein products (AOPPs) were predominantly deposited in macrophages in the intestinal lamina propria of CD patients. However, whether AOPPs contributes to macrophage dysfunction in CD and the underlying mechanism remains unknown. This study aimed to investigate the effects of AOPPs on macrophages functions in CD. In the present study, we discovered increased AOPPs levels were positively correlated with impaired autophagy in macrophages of CD patients. AOPPs could impair autophagic flux by inducing lysosomal dysfunction in RAW264.7 cell line and macrophages in AOPPs-treated mice, evidenced by increased number of autophagosomes, blocked degradation of autophagy-related proteins (LC3B-II and SQSTM1/p62), and decreased activity of lysosomal proteolytic enzymes after AOPPs challenge. Besides, AOPPs could also promote M1 polarization in RAW264.7 cells and bone marrow derived macrophages (BMDMs) in AOPPs-treated mice. In addition, our study revealed that PI3K-AKT-mTOR-TFEB pathway was activated by AOPPs in macrophages. Inhibition of the PI3K pathway effectively alleviated AOPPs-induced autophagy impairment and M1 polarization both in vitro and in vivo, thus reducing intestinal inflammation in AOPPs-challenged mice. Together, this study demonstrates that AOPPs-induced autophagy impairment in macrophages is crucial for CD progression.
Collapse
Affiliation(s)
- Yan Liao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jiahui Xu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Biyan Qin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jie Shi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Caolitao Qin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Fang Xie
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shiyu Ou
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jing Tang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Weidong Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Fengfei Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Lan Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
5
|
Walker A, Schmitt-Kopplin P. The role of fecal sulfur metabolome in inflammatory bowel diseases. Int J Med Microbiol 2021; 311:151513. [PMID: 34147944 DOI: 10.1016/j.ijmm.2021.151513] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/22/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Sulfur metabolism and sulfur-containing metabolites play an important role in the human digestive system, and sulfur compounds and pathways are associated with inflammatory bowel diseases (IBD). In fact, cysteine metabolism results in the production of taurine and sulfate, and gut microbes catabolize them into hydrogen sulfide, a signaling molecule with various biological functions. Besides metabolites originating from sulfur metabolism, several other sulfur-containing metabolites of different classes were detected in human feces, consisting of non-volatile and volatile compounds. Sulfated steroids and bile acids such as taurine-conjugated bile acids are the major classes along with sulfur amino acids and sulfur-containing peptides. Indeed, sulfur-containing metabolites were described in stool samples from healthy subjects, patients suffering from colorectal cancer or IBD. In metabolomics-driven studies, around 50 known sulfur-containing metabolites were linked to IBD. Taurine, taurocholic acid, taurochenodeoxycholic acid, methionine, methanethiol and hydrogen sulfide were regularly reported in IBD studies, and most of them were elevated in stool samples from IBD patients. We summarized from this review that there is strong interplay between perturbed gut microbiota in IBD, and the consistently higher abundance of sulfur-containing metabolites, which potentially represent substrates for sulfidogenic bacteria such as Bilophila or Escherichia and promote their growth. These bacteria might shift their metabolism towards the degradation of taurine and cysteine and therefore to a higher hydrogen sulfide production.
Collapse
Affiliation(s)
- Alesia Walker
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany; ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany; Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| |
Collapse
|
6
|
Jing Y, Ran Y, Zhao J, Zhou Z, Zhang J, Qian Y, Yin Z, Zhang M, Lv Z, Zhou L, Wang B. Peptidoglycan Suppresses Phagocytic Activities and Apoptosis of Macrophages in Colonic Mucosa Tissues of Crohn's Disease Patients and In Vitro. Med Sci Monit 2018; 24:3382-3392. [PMID: 29787559 PMCID: PMC5994142 DOI: 10.12659/msm.910266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Rac1 signaling plays a crucial role in controlling macrophage functions in CD. Peptidoglycan triggers several intracellular signaling pathways, including activation of Rac1, to regulate the function of macrophage. Suppressed Rac1 signaling in non-inflamed colonic mucosa of Crohn’s disease patients has been shown to correlate with increased innate immunity. Material/Methods We examined the effect of peptidoglycan on Rac1 signaling in macrophages and mucosal tissue samples collected from 10 patients with active Crohn’s disease and further investigated the effects of peptidoglycan on apoptosis and phagocytic activities of macrophages in vitro. Results Macrophage infiltration and Rac1 signaling was increased in inflamed mucosal tissues of Crohn’s disease patients. Immunoblotting assays revealed that peptidoglycan dose- and time-dependently increased the expression of Rac1-GTP, phosphorylated VAV1, and phosphorylated PAK1in RAW264.7 macrophages, which, however, was attenuated by 6-thioguanine. Peptidoglycan also dose-dependently inhibited phagocytic activities of human peripheral blood monocytic cells (PBMCs), which were partially abated by 6-thioguanine or NSC23766. Flow cytometry showed that peptidoglycan (3 μg/mL) decreased the proportion of apoptotic human PBMCs versus controls. The addition of 6-thioguanine or NSC3766 to peptidoglycan led to a sharper rise in the proportion of apoptotic human PBMCs than 6-thioguanine or NSC3766 alone. Conclusions Our findings suggest that Rac1 signaling is a common molecular target shared by peptidoglycan and immunosuppressive treatment in intestinal macrophages. Inhibiting Rac1 activation may be crucial for optimizing macrophage immunity for treatment of Crohn’s disease.
Collapse
Affiliation(s)
- Yang Jing
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China (mainland)
| | - Ying Ran
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China (mainland)
| | - Jing Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China (mainland)
| | - Zhe Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China (mainland)
| | - Jun Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China (mainland)
| | - Yiqi Qian
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China (mainland)
| | - Zhiqi Yin
- Department of Pathology, Tianjin No. 1 Central Hospital, Tianjin, China (mainland)
| | - Mingfang Zhang
- Department of Pathology, Tianjin No. 1 Central Hospital, Tianjin, China (mainland)
| | - Zongshun Lv
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China (mainland)
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China (mainland)
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China (mainland)
| |
Collapse
|
7
|
Serban DE. Microbiota in Inflammatory Bowel Disease Pathogenesis and Therapy: Is It All About Diet? Nutr Clin Pract 2015; 30:760-79. [PMID: 26452390 DOI: 10.1177/0884533615606898] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis, Crohn's disease, and unclassified IBD, continues to cause significant morbidity. While its incidence is increasing, no clear etiology and no cure have yet been discovered. Recent findings suggest that IBD may have a multifactorial etiology, where complex interactions between genetics, epigenetics, environmental factors (including diet but also infections, antibiotics, and sanitation), and host immune system lead to abnormal immune responses and chronic inflammation. Over the past years, the role of altered gut microbiota (in both composition and function) in IBD pathogenesis has emerged as an outstanding area of interest. According to new findings, gut dysbiosis may appear as a key element in initiation of inflammation in IBD and its complications. Moreover, complex metagenomic studies provide possibilities to distinguish between IBD types and appreciate severity and prognosis of the disease, as well as response to therapy. This review provides an updated knowledge of recent findings linking altered bacterial composition and functions, viruses, and fungi to IBD pathogenesis. It also highlights the complex genetic, epigenetic, immune, and microbial interactions in relation to environmental factors (including diet). We overview the actual options to manipulate the altered microbiota, such as modified diet, probiotics, prebiotics, synbiotics, antibiotics, and fecal transplantation. Future possible therapies are also included. Targeting altered microbiota could be the next therapeutic personalized approach, but more research and well-designed comparative prospective studies are required to formulate adequate directions for prevention and therapy.
Collapse
Affiliation(s)
- Daniela Elena Serban
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Second Department of Pediatrics, Emergency Children's Hospital, Cluj-Napoca, Romania
| |
Collapse
|