1
|
Massey AE, Sikander M, Chauhan N, Kumari S, Setua S, Shetty AB, Mandil H, Kashyap VK, Khan S, Jaggi M, Yallapu MM, Hafeez BB, Chauhan SC. Next-generation paclitaxel-nanoparticle formulation for pancreatic cancer treatment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 20:102027. [PMID: 31170509 DOI: 10.1016/j.nano.2019.102027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/26/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022]
Abstract
Pancreatic cancer (PanCa) is a major cause of cancer-related death due to limited therapeutic options. As pancreatic tumors are highly desmoplastic, they prevent appropriate uptake of therapeutic payloads. Thus, our objective is to develop a next-generation nanoparticle system for treating PanCa. We generated a multi-layered Pluronic F127 and polyvinyl alcohol stabilized and poly-L-lysine coated paclitaxel loaded poly(lactic-co-glycolic acid) nanoparticle formulation (PPNPs). This formulation exhibited optimal size (~160 nm) and negative Zeta potential (-6.02 mV), efficient lipid raft mediated internalization, pronounced inhibition in growth and metastasis in vitro, and in chemo-naïve and chemo-exposed orthotopic xenograft mouse models. Additionally, PPNPs altered nanomechanical properties of PanCa cells as suggested by the increased elastic modulus in nanoindentation analyses. Immunohistochemistry of orthotopic tumors demonstrated decreased expression of tumorigenic and metastasis associated proteins (ki67, vimentin and slug) in PPNPs treated mice. These results suggest that PPNPs represent a viable and robust platform for (PanCa).
Collapse
Affiliation(s)
- Andrew E Massey
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN, USA, 38163
| | - Mohammed Sikander
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN, USA, 38163
| | - Neeraj Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN, USA, 38163
| | - Sonam Kumari
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN, USA, 38163
| | - Saini Setua
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN, USA, 38163
| | - Advait B Shetty
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN, USA, 38163
| | - Hassan Mandil
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN, USA, 38163
| | - Vivek K Kashyap
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN, USA, 38163
| | - Sheema Khan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN, USA, 38163
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN, USA, 38163
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN, USA, 38163
| | - Bilal Bin Hafeez
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN, USA, 38163
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN, USA, 38163.
| |
Collapse
|
2
|
Khan S, Chauhan N, Yallapu MM, Ebeling MC, Balakrishna S, Ellis RT, Thompson PA, Balabathula P, Behrman SW, Zafar N, Singh MM, Halaweish FT, Jaggi M, Chauhan SC. Nanoparticle formulation of ormeloxifene for pancreatic cancer. Biomaterials 2015; 53:731-43. [PMID: 25890768 DOI: 10.1016/j.biomaterials.2015.02.082] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is the fourth most prevalent cancer with about an 85% mortality rate; thus, an utmost need exists to discover new therapeutic modalities that would enhance therapy outcomes of this disease with minimal or no side effects. Ormeloxifene (ORM), a synthetic molecule, has exhibited potent anti-cancer effects through inhibition of important oncogenic and proliferation signaling pathways. However, the anti-cancer efficacy of ORM can be further improved by developing its nanoformulation, which will also offer tumor specific targeted delivery. Therefore, we have developed a novel ORM encapsulated poly(lactic-co-glycolic acid) nanoparticle (NP) formulation (PLGA-ORM NP). This formulation was characterized for particle size, chemical composition, and drug loading efficiency, using various physico-chemical methods (TEM, FT-IR, DSC, TGA, and HPLC). Because of its facile composition, this novel formulation is compatible with antibody/aptamer conjugation to achieve tumor specific targeting. The particle size analysis of this PLGA-ORM formulation (∼100 nm) indicates that this formulation can preferentially reach and accumulate in tumors by the Enhanced Permeability and Retention (EPR) effect. Cellular uptake and internalization studies demonstrate that PLGA-ORM NPs escape lysosomal degradation, providing efficient endosomal release to cytosol. PLGA-ORM NPs showed remarkable anti-cancer potential in various pancreatic cancer cells (HPAF-II, AsPC-1, BxPC-3, Panc-1, and MiaPaca) and a BxPC-3 xenograft mice model resulting in increased animal survival. PLGA-ORM NPs suppressed pancreatic tumor growth via suppression of Akt phosphorylation and expression of MUC1, HER2, PCNA, CK19 and CD31. This study suggests that the PLGA-ORM formulation is highly efficient for the inhibition of pancreatic tumor growth and thus can be valuable for the treatment of pancreatic cancer in the future.
Collapse
Affiliation(s)
- Sheema Khan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Neeraj Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mara C Ebeling
- Cancer Biology Research Center, Sanford Research/USD, Sioux Falls, SD, USA
| | - Swathi Balakrishna
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert T Ellis
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Paul A Thompson
- Methodology and Data Analysis Center, Sanford Research, Sioux Falls, SD, USA
| | - Pavan Balabathula
- Department of Pharmaceutical Sciences and Plough Center for Sterile Drug Delivery Systems, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Stephen W Behrman
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nadeem Zafar
- Department of Pathology, University of Tennessee at Memphis, Memphis, TN, USA
| | - Man M Singh
- Saraswati Dental College, Lucknow, Uttar Pradesh, India
| | - Fathi T Halaweish
- Department of Chemistry & Biochemistry, South Dakota State University, Brookings, SD, 57007, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
3
|
Nigam P, Waghmode S, Louis M, Wangnoo S, Chavan P, Sarkar D. Graphene quantum dots conjugated albumin nanoparticles for targeted drug delivery and imaging of pancreatic cancer. J Mater Chem B 2014; 2:3190-3195. [DOI: 10.1039/c4tb00015c] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pancreatic cancer is considered to be the deadliest of all cancers due to its poor prognosis and resistance to conventional therapies.
Collapse
Affiliation(s)
- Preeti Nigam
- Combichem Bioresource Centre
- National Chemical Laboratory
- Pune, India
| | | | | | | | - Pooja Chavan
- Department of Chemistry
- Garware College
- Pune, India
| | - Dhiman Sarkar
- Combichem Bioresource Centre
- National Chemical Laboratory
- Pune, India
| |
Collapse
|
4
|
Sibaud V, Fricain JC, Baran R, Robert C. Anomalies pigmentaires induites par les traitements anticancéreux. Première partie : les chimiothérapies. Ann Dermatol Venereol 2013; 140:183-96. [DOI: 10.1016/j.annder.2012.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/31/2012] [Accepted: 12/05/2012] [Indexed: 02/06/2023]
|
5
|
Papa AL, Basu S, Sengupta P, Banerjee D, Sengupta S, Harfouche R. Mechanistic studies of Gemcitabine-loaded nanoplatforms in resistant pancreatic cancer cells. BMC Cancer 2012; 12:419. [PMID: 22998550 PMCID: PMC3543259 DOI: 10.1186/1471-2407-12-419] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/20/2012] [Indexed: 01/06/2023] Open
Abstract
Background Pancreatic cancer remains the deadliest of all cancers, with a mortality rate of 91%. Gemcitabine is considered the gold chemotherapeutic standard, but only marginally improves life-span due to its chemical instability and low cell penetrance. A new paradigm to improve Gemcitabine’s therapeutic index is to administer it in nanoparticles, which favour its delivery to cells when under 500 nm in diameter. Although promising, this approach still suffers from major limitations, as the choice of nanovector used as well as its effects on Gemcitabine intracellular trafficking inside pancreatic cancer cells remain unknown. A proper elucidation of these mechanisms would allow for the elaboration of better strategies to engineer more potent Gemcitabine nanotherapeutics against pancreatic cancer. Methods Gemcitabine was encapsulated in two types of commonly used nanovectors, namely poly(lactic-co-glycolic acid) (PLGA) and cholesterol-based liposomes, and their physico-chemical parameters assessed in vitro. Their mechanisms of action in human pancreatic cells were compared with those of the free drug, and with each others, using cytotoxity, apoptosis and ultrastructural analyses. Results Physico-chemical analyses of both drugs showed high loading efficiencies and sizes of less than 200 nm, as assessed by dynamic light scattering (DLS) and transmission electron microscopy (TEM), with a drug release profile of at least one week. These profiles translated to significant cytotoxicity and apoptosis, as well as distinct intracellular trafficking mechanisms, which were most pronounced in the case of PLGem showing significant mitochondrial, cytosolic and endoplasmic reticulum stresses. Conclusions Our study demonstrates how the choice of nanovector affects the mechanisms of drug action and is a crucial determinant of Gemcitabine intracellular trafficking and potency in pancreatic cancer settings.
Collapse
Affiliation(s)
- Anne-Laure Papa
- BWH-HST Center for Biomedical Engineering, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|