Wang B, Yang Q, Che L, Sun L, Du N. Acyl-CoA thioesterase 13 (
ACOT13) attenuates the progression of autosomal dominant polycystic kidney disease
in vitro via triggering mitochondrial-related cell apoptosis.
Aging (Albany NY) 2024;
16:11877-11892. [PMID:
39172111 PMCID:
PMC11386924 DOI:
10.18632/aging.206054]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/05/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE
Autosomal dominant polycystic kidney disease (ADPKD) is the most common cause of end-stage kidney disease. It has been shown that Acyl-CoA thioesterase 13 (ACOT13) level was reduced in renal cystic tissues from ADPKD patients. However, the role of ACOT13 in ADPKD remains largely elusive.
METHODS
The data in the GSE7869 dataset were acquired from the GEO database to determine ACOT13 level between normal renal cortical tissues and renal cystic tissues. Next, the potential functions of ACOT13 were explored by gene set enrichment analysis (GSEA). Furthermore, ACOT13 level in ADPKD cells (WT9-12) was verified by RT-qPCR. The effects of ACOT13 on WT9-12 cell growth were evaluated using the EdU staining and flow cytometry assays.
RESULTS
Compared to normal group, ACOT13 mRNA level was obviously reduced in renal cystic tissues and WT9-12 cells. Meanwhile, GSEA results showed that compared to the low ACOT13 expression group, PI3K-Akt and MAPK signaling pathways were inactivated, and PPAR signaling pathway and fatty acid metabolism were activated in high ACOT13 expression group. Furthermore, overexpression of ACOT13 notably reduced WT9-12 cell proliferation and triggered cell cycle arrest. Moreover, ACOT13 overexpression remarkably triggered apoptosis, increased cleaved caspase 3 protein level, reduced ATP production and induced loss of mitochondrial membrane potential in WT9-12 cells, suggesting that ACOT13 overexpression could trigger mitochondrial-related apoptosis in WT9-12 cells.
CONCLUSIONS
Collectively, our results showed that overexpression of ACOT13 could suppress WT9-12 cell proliferation and trigger mitochondrial-mediated cell apoptosis, suggesting that ACOT13 may exert a protective role in ADPKD.
Collapse