1
|
Jayne D, Herbert C, Anquetil V, Teixeira G. Exploring the Critical Role of Tight Junction Proteins in Kidney Disease Pathogenesis. Nephron Clin Pract 2024:1-11. [PMID: 39532075 DOI: 10.1159/000542498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Kidney disease poses a significant global health challenge, marked by a rapid decline in renal function due to a variety of causative factors. A crucial element in the pathophysiology of kidney disease is the dysregulation of epithelial cells, which are vital components of renal tissue architecture. The integrity and functionality of these cells are largely dependent on tight junctions (TJ) proteins, complex molecular structures that link adjacent epithelial cells. These TJ not only confer cellular polarity and maintain essential barrier functions but also regulate epithelial permeability. SUMMARY TJ proteins are pivotal in their traditional role at cell junctions and in their non-junctional capacities. Recent research has shifted the perception of these proteins from mere structural elements to dynamic mediators of kidney disease, playing significant roles in various renal pathologies. This review explores the multifaceted roles of TJ proteins, focusing on their functions both within and external to the renal epithelial junctions. It highlights how these proteins contribute to mechanisms underlying kidney disease, emphasizing their impact on disease progression and outcomes. KEY MESSAGES TJ proteins have emerged as significant players in the field of nephrology, not only for their structural role but also for their regulatory functions in disease pathology. Their dual roles in maintaining epithelial integrity and mediating pathological processes make them promising therapeutic targets for kidney disease. Understanding the intricate contributions of TJ proteins in kidney pathology offers potential for novel therapeutic strategies, aiming to modulate these proteins to halt or reverse the progression of kidney disease.
Collapse
Affiliation(s)
- David Jayne
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
2
|
Rungrasameviriya P, Santilinon A, Atichartsintop P, Hadpech S, Thongboonkerd V. Tight junction and kidney stone disease. Tissue Barriers 2024; 12:2210051. [PMID: 37162265 PMCID: PMC10832927 DOI: 10.1080/21688370.2023.2210051] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/30/2023] [Indexed: 05/11/2023] Open
Abstract
Defects of tight junction (TJ) are involved in many diseases related to epithelial cell functions, including kidney stone disease (KSD), which is a common disease affecting humans for over a thousand years. This review provides brief overviews of KSD and TJ, and summarizes the knowledge on crystal-induced defects of TJ in renal tubular epithelial cells (RTECs) in KSD. Calcium oxalate (CaOx) crystals, particularly COM, disrupt TJ via p38 MAPK and ROS/Akt/p38 MAPK signaling pathways, filamentous actin (F-actin) reorganization and α-tubulin relocalization. Stabilizing p38 MAPK signaling, reactive oxygen species (ROS) production, F-actin and α-tubulin by using SB239063, N-acetyl-L-cysteine (NAC), phalloidin and docetaxel, respectively, successfully prevent the COM-induced TJ disruption and malfunction. Additionally, genetic disorders of renal TJ, including mutations and single nucleotide polymorphisms (SNPs) of CLDN2, CLDN10b, CLDN14, CLDN16 and CLDN19, also affect KSD. Finally, the role of TJ as a potential target for KSD therapeutics and prevention is also discussed.
Collapse
Affiliation(s)
- Papart Rungrasameviriya
- Nawamethee Project, Doctor of Medicine Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Aticha Santilinon
- Nawamethee Project, Doctor of Medicine Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Palita Atichartsintop
- Nawamethee Project, Doctor of Medicine Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sudarat Hadpech
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Wang Z, Deng Q, Gu Y, Li M, Chen Y, Wang J, Zhang Y, Zhang J, Hu Q, Zhang S, Chen W, Chen Z, Li J, Wang X, Liang H. Integrated single-nucleus sequencing and spatial architecture analysis identified distinct injured-proximal tubular types in calculi rats. Cell Biosci 2023; 13:92. [PMID: 37208718 DOI: 10.1186/s13578-023-01041-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/01/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Urolithiasis with high prevalence and recurrence rate, has impacts on kidney injury in patients, becomes a socioeconomic and healthcare problem in worldwide. However, the biology of kidney with crystal formation and proximal tubular injury remains essentially unclear. The present study aims to evaluate the cell biology and immune-communications in urolithiasis mediated kidney injury, to provide new insights in the kidney stone treatment and prevention. RESULTS We identified 3 distinct injured-proximal tubular cell types based on the differentially expression injury markers (Havcr1 and lcn2) and functional solute carriers (slc34a3, slc22a8, slc38a3 and slc7a13), and characterized 4 main immune cell types in kidney and one undefined cell population, where F13a1+/high/CD163+/high monocyte & macrophage and Sirpa/Fcgr1a/Fcgr2a+/high granulocyte were the most enriched. We performed intercellular crosstalk analysis based on the snRNA-seq data and explored the potential immunomodulation of calculi stone formation, and founded that the interaction between ligand Gas6 and its receptors (Gas6-Axl, Gas6-Mertk) was specifically observed in the injured-PT1 cells, but not injured-PT2 and -PT3 cells. The interaction of Ptn-Plxnb2 was only observed between the injured-PT3 cells and its receptor enriched cells. CONCLUSIONS Present study comprehensively characterized the gene expression profile in the calculi rat kidney at single nucleus level, identified novel marker genes for all cell types of rat kidney, and determined 3 distinct sub-population of injured-PT clusters, as well as intercellular communication between injured-PTs and immune cells. Our collection of data provides a reliable resource and reference for studies on renal cell biology and kidney disease.
Collapse
Affiliation(s)
- Zhu Wang
- Department of Urology, People's Hospital of Longhua Shenzhen, Southern Medical University, Shenzhen, Guangdong, 518109, P.R. China
| | - Qiong Deng
- Department of Urology, People's Hospital of Longhua Shenzhen, Southern Medical University, Shenzhen, Guangdong, 518109, P.R. China
| | - Yanli Gu
- Central Laboratory, People's Hospital of Longhua Shenzhen, Southern Medical University, Shenzhen, Guangdong, 518109, P.R. China
| | - Min Li
- Department of Pathology, People's Hospital of Longhua Shenzhen, Southern Medical University, Shenzhen, Guangdong, 518109, P.R. China
| | - Yeda Chen
- Department of Urology, People's Hospital of Longhua Shenzhen, Southern Medical University, Shenzhen, Guangdong, 518109, P.R. China
| | - Jieyan Wang
- Department of Urology, People's Hospital of Longhua Shenzhen, Southern Medical University, Shenzhen, Guangdong, 518109, P.R. China
| | - Ying Zhang
- Department of Urology, People's Hospital of Longhua Shenzhen, Southern Medical University, Shenzhen, Guangdong, 518109, P.R. China
| | - Jianwen Zhang
- Department of Urology, People's Hospital of Longhua Shenzhen, Southern Medical University, Shenzhen, Guangdong, 518109, P.R. China
| | - Qiyi Hu
- Department of Urology, People's Hospital of Longhua Shenzhen, Southern Medical University, Shenzhen, Guangdong, 518109, P.R. China
| | - Shenping Zhang
- Department of Urology, People's Hospital of Longhua Shenzhen, Southern Medical University, Shenzhen, Guangdong, 518109, P.R. China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 518109, P.R. China
| | - Zhenhua Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 518109, P.R. China
| | - Jiaying Li
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 518109, P.R. China
| | - Xisheng Wang
- Department of Urology, People's Hospital of Longhua Shenzhen, Southern Medical University, Shenzhen, Guangdong, 518109, P.R. China.
- Department of Urology, People's Hospital of Longhua, Southern Medical University, 38 Jinglong Jianshe Road, Shenzhen, Guangdong, 518109, P.R. China.
| | - Hui Liang
- Department of Urology, People's Hospital of Longhua Shenzhen, Southern Medical University, Shenzhen, Guangdong, 518109, P.R. China.
- Department of Urology, People's Hospital of Longhua, Southern Medical University, 38 Jinglong Jianshe Road, Shenzhen, Guangdong, 518109, P.R. China.
| |
Collapse
|
4
|
Wei W, Li W, Yang L, Weeramantry S, Ma L, Fu P, Zhao Y. Tight junctions and acute kidney injury. J Cell Physiol 2023; 238:727-741. [PMID: 36815285 DOI: 10.1002/jcp.30976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/24/2023]
Abstract
Acute kidney injury (AKI) is characterized by a rapid reduction in kidney function caused by various etiologies. Tubular epithelial cell dysregulation plays a pivotal role in the pathogenesis of AKI. Tight junction (TJ) is the major molecular structure that connects adjacent epithelial cells and is critical in maintaining barrier function and determining the permeability of epithelia. TJ proteins are dysregulated in various types of AKI, and some reno-protective drugs can reverse TJ changes caused by insult. An in-depth understanding of TJ regulation and its causality with AKI will provide more insight to the disease pathogenesis and will shed light on the potential role of TJs to serve as novel therapeutic targets in AKI.
Collapse
Affiliation(s)
- Wei Wei
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiying Li
- Department of Internal Medicine, Florida Hospital/AdventHealth, Orlando, Florida, USA
| | - Letian Yang
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Savidya Weeramantry
- Department of Internal Medicine, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Liang Ma
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Fu
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuliang Zhao
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Ulrich EH, Harvey E, Morgan CJ, Pinsk M, Erickson R, Robinson LA, Alexander RT. Mutations in CLDN2 Are Not a Common Cause of Pediatric Idiopathic Hypercalciuria in Canada. Can J Kidney Health Dis 2022; 9:20543581221098782. [PMID: 35615069 PMCID: PMC9125053 DOI: 10.1177/20543581221098782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Hypercalciuria is the most common risk factor for kidney stone formation, including in pediatric patients. However, the etiology is often unknown and children are frequently diagnosed with idiopathic hypercalciuria. Nearly 50% of children with hypercalciuria have a first-degree relative with kidney stones, suggesting a strong genetic basis for this disease. A failure of calcium reabsorption from the proximal nephron is implicated in the pathogenesis of hypercalciuria. Claudin-2 is a tight junction protein abundantly expressed in the proximal tubule. It confers paracellular permeability to calcium that is essential for transport across the proximal tubule where the majority of filtered calcium is reabsorbed. Objective: Our objective was to examine the frequency of coding variations in CLDN2 in a cohort of children with idiopathic hypercalciuria. Design: Mixed method including retrospective chart review and patient interview, followed by genetic sequencing. Setting: Three tertiary care centers in Canada. Patients: Children (age 1-18 years) with idiopathic hypercalciuria. Patients with other causes of hypercalciuria were excluded. Methods: Data were collected from 40 patients with idiopathic hypercalciuria. Informed consent to collect DNA was obtained from 13 patients, and the final and only coding exon of CLDN2 was sequenced. Results: The majority of patients were male, white, and had a positive family history of kidney stones. Parathyroid hormone levels were significantly lower than the reference range (P < .001). The levels of 1,25-dihydroxyvitamin D were also significantly higher in our patient cohort, relative to the reference range (P < .001). Sequence analysis of CLDN2 did not identify any coding variations. Limitations: Sequencing analysis was limited to the final coding exon and small sample size. Conclusions: CLDN2 coding variations are not a common cause of idiopathic hypercalciuria in Canadian children. Further study is needed to determine the causes of hypercalciuria in pediatric patients and develop targeted therapies.
Collapse
|
6
|
Molecular mechanisms altering tubular calcium reabsorption. Pediatr Nephrol 2022; 37:707-718. [PMID: 33796889 DOI: 10.1007/s00467-021-05049-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/12/2021] [Accepted: 03/09/2021] [Indexed: 12/09/2022]
Abstract
The majority of calcium filtered by the glomerulus is reabsorbed along the nephron. Most is reabsorbed from the proximal tubule (> 60%) via a paracellular pathway composed of the tight junction proteins claudins-2 and -12, a process driven by sodium and consequently water reabsorption. The thick ascending limb reabsorbs the next greatest amount of calcium (20-25%), also by a paracellular pathway composed of claudins-16 and -19. This pathway is regulated by the CaSR, whose activity increases the expression of claudin-14, a protein that blocks paracellular calcium reabsorption. The fine tuning of urinary calcium excretion occurs in the distal convoluted and connecting tubule by a transcellular pathway composed of the apical calcium channel TRPV5, the calcium shuttling protein calbindin-D28K and the basolateral proteins PMCA1b and the sodium calcium exchanger, NCX. Not surprisingly, mutations in a subset of these genes cause monogenic disorders with hypercalciuria as a part of the phenotype. More commonly, "idiopathic" hypercalciuria is encountered clinically with genetic variations in CLDN14, the CASR and TRPV5 associating with kidney stones and increased urinary calcium excretion. An understanding of the molecular pathways conferring kidney tubular calcium reabsorption is employed in this review to help explain how dietary and medical interventions for this disorder lower urinary calcium excretion.
Collapse
|
7
|
Jo CH, Kim S, Kim GH. Claudins in kidney health and disease. Kidney Res Clin Pract 2022; 41:275-287. [PMID: 35354245 PMCID: PMC9184838 DOI: 10.23876/j.krcp.21.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/29/2021] [Indexed: 11/04/2022] Open
Abstract
Claudins are strategically located to exert their physiologic actions along with the nephron segments from the glomerulus. Claudin-1 is normally located in the Bowman’s capsule, but its overexpression can reach the podocytes and lead to albuminuria. In the proximal tubule (PT), claudin-2 forms paracellular channels selective for water, Na+, K+, and Ca2+. Claudin-2 gene mutations are associated with hypercalciuria and kidney stones. Claudin-10 has two splice variants, -10a and -10b; Claudin-10a acts as an anion-selective channel in the PT, and claudin-10b functions as a cation-selective pore in the thick ascending limb (TAL). Claudin-16 and claudin-19 mediate paracellular transport of Na+, Ca2+, and Mg2+ in the TAL, where the expression of claudin-3/16/19 and claudin-10b are mutually exclusive. The claudin-16 or -19 mutation causes familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Claudin-14 polymorphisms have been linked to increased risk of hypercalciuria. Claudin-10b mutations produce HELIX syndrome, which encompasses hypohidrosis, electrolyte imbalance, lacrimal gland dysfunction, ichthyosis, and xerostomia. Hypercalciuria and magnesuria in metabolic acidosis are related to downregulation of PT and TAL claudins. In the TAL, stimulation of calcium-sensing receptors upregulates claudin-14 and negatively acts on the claudin-16/19 complex. Claudin-3 acts as a general barrier to ions in the collecting duct. If this barrier is disturbed, urine acidification might be impaired. Claudin-7 forms a nonselective paracellular channel facilitating Cl– and Na+ reabsorption in the collecting ducts. Claudin-4 and -8 serve as anion channels and mediate paracellular Cl– transport; their upregulation may contribute to pseudohypoaldosteronism II and salt-sensitive hypertension.
Collapse
Affiliation(s)
- Chor ho Jo
- Hanyang Biomedical Research Institute, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Sua Kim
- Hanyang Biomedical Research Institute, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Gheun-Ho Kim
- Hanyang Biomedical Research Institute, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
- Correspondence: Gheun-Ho Kim Department of Internal Medicine, Hanyang University College of Medicine, 222-1 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea. E-mail:
| |
Collapse
|
8
|
Beggs MR, Young K, Pan W, O'Neill DD, Saurette M, Plain A, Rievaj J, Doschak MR, Cordat E, Dimke H, Alexander RT. Claudin-2 and claudin-12 form independent, complementary pores required to maintain calcium homeostasis. Proc Natl Acad Sci U S A 2021; 118:e2111247118. [PMID: 34810264 PMCID: PMC8694054 DOI: 10.1073/pnas.2111247118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 12/29/2022] Open
Abstract
Calcium (Ca2+) homeostasis is maintained through coordination between intestinal absorption, renal reabsorption, and bone remodeling. Intestinal and renal (re)absorption occurs via transcellular and paracellular pathways. The latter contributes the bulk of (re)absorption under conditions of adequate intake. Epithelial paracellular permeability is conferred by tight-junction proteins called claudins. However, the molecular identity of the paracellular Ca2+ pore remains to be delineated. Claudins (Cldn)-2 and -12 confer Ca2+ permeability, but deletion of either claudin does not result in a negative Ca2+ balance or increased calciotropic hormone levels, suggesting the existence of additional transport pathways or parallel roles for the two claudins. To test this, we generated a Cldn2/12 double knockout mouse (DKO). These animals have reduced intestinal Ca2+ absorption. Colonic Ca2+ permeability is also reduced in DKO mice and significantly lower than single-null animals, while small intestine Ca2+ permeability is unaltered. The DKO mice display significantly greater urinary Ca2+ wasting than Cldn2 null animals. These perturbations lead to hypocalcemia and reduced bone mineral density, which was not observed in single-KO animals. Both claudins were localized to colonic epithelial crypts and renal proximal tubule cells, but they do not physically interact in vitro. Overexpression of either claudin increased Ca2+ permeability in cell models with endogenous expression of the other claudin. We find claudin-2 and claudin-12 form partially redundant, independent Ca2+ permeable pores in renal and colonic epithelia that enable paracellular Ca2+ (re)absorption in these segments, with either one sufficient to maintain Ca2+ balance.
Collapse
Affiliation(s)
- Megan R Beggs
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Women's and Children's Health Research Institute, Edmonton, AB, T6G 1C9, Canada
| | - Kennedi Young
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Wanling Pan
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Debbie D O'Neill
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Matthew Saurette
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Allein Plain
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Juraj Rievaj
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Michael R Doschak
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H5, Canada
| | - Emmanuelle Cordat
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Nephrology, Odense University Hospital, 5000 Odense, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada;
- Women's and Children's Health Research Institute, Edmonton, AB, T6G 1C9, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 1C9, Canada
| |
Collapse
|
9
|
Anwer S, Branchard E, Dan Q, Dan A, Szászi K. Tumor necrosis factor-α induces claudin-3 upregulation in kidney tubular epithelial cells through NF-κB and CREB1. Am J Physiol Cell Physiol 2021; 320:C495-C508. [PMID: 33439776 DOI: 10.1152/ajpcell.00185.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Claudins are essential for tight junction formation and paracellular transport, and they affect key cellular events including proliferation and migration. The properties of tight junctions are dynamically modulated by a variety of inputs. We previously showed that the inflammatory cytokine tumor necrosis factor-α (TNFα), a major pathogenic factor in kidney disease, alters epithelial permeability by affecting the expression of claudin-1, -2, and -4 in kidney tubular cells. Here, we explored the effect of TNFα on claudin-3 (Cldn-3), a ubiquitous barrier-forming protein. We found that TNFα elevated Cldn-3 protein expression in tubular epithelial cells (LLC-PK1 and IMCD3) as early as 3 h post treatment. Bafilomycin A and bortezomib, inhibitors of lysosomal and proteasomes, respectively, reduced Cldn-3 degradation. However, TNFα caused a strong upregulation of Cldn-3 in the presence of bafilomycin, suggesting an effect independent from lysosomes. Blocking protein synthesis using cycloheximide prevented Cldn-3 upregulation by TNFα, verifying the contribution of de novo Cldn-3 synthesis. Indeed, TNFα elevated Cldn-3 mRNA levels at early time points. Using pharmacological inhibitors and siRNA-mediated silencing, we determined that the effect of TNFα on Cldn-3 was mediated by extracellular signal regulated kinase (ERK)-dependent activation of NF-κB and PKA-induced activation of CREB1. These two pathways were turned on by TNFα in parallel and both were required for the upregulation of Cldn-3. Because Cldn-3 was suggested to modulate cell migration and epithelial-mesenchymal transition (EMT), and TNFα was shown to affect these processes, Cldn-3 upregulation may modulate regeneration of the tubules following injury.
Collapse
Affiliation(s)
- Shaista Anwer
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada
| | - Emily Branchard
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada
| | - Qinghong Dan
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada
| | - Angela Dan
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Meoli L, Günzel D. Channel functions of claudins in the organization of biological systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183344. [PMID: 32442419 DOI: 10.1016/j.bbamem.2020.183344] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Claudins are tight junction proteins mostly appreciated in their function of paracellular barrier-formation. Compared to a virtual absence of any tight junctions, their paracellular sealing role certainly stands out. Yet, it was recognized immediately after the discovery of the first claudins, that some members of the claudin protein family were able to convey size and charge selectivity to the paracellular pathway. Thus, paracellular permeability can be fine-tuned according to the physiological needs of a tissue by inserting these channel-forming claudins into tight junction strands. Precise permeability adjustment is further suggested by the presence of numerous isoforms of channel-forming claudins (claudin-10b-, -15-, -16-like isoforms) in various vertebrate taxa. Moreover, their expression and localization are controlled by multiple transcriptional and posttranslational mechanisms. Consequently, mutation or dysregulation of channel-forming claudins can cause severe diseases. The present review therefore aims at providing an up-to-date report of the current research on these aspects of channel-forming claudins and their possible implications on future developments.
Collapse
Affiliation(s)
- Luca Meoli
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Dorothee Günzel
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany.
| |
Collapse
|
11
|
Claudin-7b and Claudin-h are required for controlling cilia morphogenesis in the zebrafish kidney. Mech Dev 2019; 161:103595. [PMID: 31887432 DOI: 10.1016/j.mod.2019.103595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/08/2019] [Accepted: 12/23/2019] [Indexed: 11/22/2022]
Abstract
Claudins are a family of proteins which are the most important components of the tight junctions. The location of Claudins on the renal tubule epithelial determines its paracellular transport characteristics, but whether Claudins have other functions in kidneys remains still unclear. Here, we showed that the transcripts encoding two Claudin family proteins, claudin-7b (cldn-7b) and claudin-h (cldn-h), were expressed in the transporting cells in the zebrafish pronephros. By knocking down of cldn-7b and cldn-h in zebrafish, we showed that these claudins morphants exhibited cystic kidneys accompanied with body curvature. Further analysis showed that down regulation of cldn-7b or cldn-h led to multiple defects in apico-basolateral polarity, cilia morphology and ciliary function in kidney. Moreover, the ciliary defect was confirmed by depletion of Cldn-7b or Cldn-h using CRISPR/Cas9 system. We also showed that both cldn-7b and cldn-h were genetically interacted with a well-known ciliary gene, arl13b. Deletion of arl13b led to curly cilia in the pronephros that phenocopied with cldn-7b and cldn-h morphants. Taken together, our data suggested that the tight junction protein, Cldn-7b and Cldn-h, regulate kidney development and function by affecting cilia morphology.
Collapse
|
12
|
Temporal Effects of Quercetin on Tight Junction Barrier Properties and Claudin Expression and Localization in MDCK II Cells. Int J Mol Sci 2019; 20:ijms20194889. [PMID: 31581662 PMCID: PMC6801663 DOI: 10.3390/ijms20194889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/28/2019] [Accepted: 09/29/2019] [Indexed: 01/22/2023] Open
Abstract
: Kidney stones affect 10% of the population. Yet, there is relatively little known about how they form or how to prevent and treat them. The claudin family of tight junction proteins has been linked to the formation of kidney stones. The flavonoid quercetin has been shown to prevent kidney stone formation and to modify claudin expression in different models. Here we investigate the effect of quercetin on claudin expression and localization in MDCK II cells, a cation-selective cell line, derived from the proximal tubule. For this study, we focused our analyses on claudin family members that confer different tight junction properties: barrier-sealing (Cldn1, -3, and -7), cation-selective (Cldn2) or anion-selective (Cldn4). Our data revealed that quercetin's effects on the expression and localization of different claudins over time corresponded with changes in transepithelial resistance, which was measured continuously throughout the treatment. In addition, these effects appear to be independent of PI3K/AKT signaling, one of the pathways that is known to act downstream of quercetin. In conclusion, our data suggest that quercetin's effects on claudins result in a tighter epithelial barrier, which may reduce the reabsorption of sodium, calcium and water, thereby preventing the formation of a kidney stone.
Collapse
|
13
|
van der Wijst J, van Goor MK, Schreuder MF, Hoenderop JG. TRPV5 in renal tubular calcium handling and its potential relevance for nephrolithiasis. Kidney Int 2019; 96:1283-1291. [PMID: 31471161 DOI: 10.1016/j.kint.2019.05.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
Abstract
Nephrolithiasis or renal stone disease is an increasingly common problem, and its relatively high recurrence rate demands better treatment options. The majority of patients with nephrolithiasis have stones that contain calcium (Ca2+), which develop upon "supersaturation" of the urine with insoluble Ca2+ salts; hence processes that influence the delivery and renal handling of Ca2+ may influence stone formation. Idiopathic hypercalciuria is indeed frequently observed in patients with kidney stones that contain Ca2+. Genetic screens of nephrolithiasis determinants have identified an increasing number of gene candidates, most of which are involved in renal Ca2+ handling. This review provides an outline of the current knowledge regarding genetics of nephrolithiasis and will mainly focus on the epithelial Ca2+ channel transient receptor potential vanilloid 5 (TRPV5), an important player in Ca2+ homeostasis. Being a member of the TRP family of ion channels, TRPV5 is currently part of a revolution in structural biology. Recent technological breakthroughs in the cryo-electron microscopy field, combined with improvements in biochemical sample preparation, have resulted in high-resolution 3-dimensional structural models of integral membrane proteins, including TRPV5. These models currently are being used to explore the proteins' structure-function relationship, elucidate the molecular mechanisms of channel regulation, and study the putative effects of disease variants. Combined with other multidisciplinary approaches, this approach may open an avenue toward better understanding of the pathophysiological mechanisms involved in hypercalciuria and stone formation, and ultimately it may facilitate prevention of stone recurrence through the development of effective drugs.
Collapse
Affiliation(s)
- Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, the Netherlands
| | - Mark K van Goor
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, the Netherlands
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, the Netherlands
| | - Joost G Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, the Netherlands.
| |
Collapse
|
14
|
Nephrolithiasis secondary to inherited defects in the thick ascending loop of henle and connecting tubules. Urolithiasis 2018; 47:43-56. [PMID: 30460527 DOI: 10.1007/s00240-018-1097-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022]
Abstract
Twin and genealogy studies suggest a strong genetic component of nephrolithiasis. Likewise, urinary traits associated with renal stone formation were found to be highly heritable, even after adjustment for demographic, anthropometric and dietary covariates. Recent high-throughput sequencing projects of phenotypically well-defined cohorts of stone formers and large genome-wide association studies led to the discovery of many new genes associated with kidney stones. The spectrum ranges from infrequent but highly penetrant variants (mutations) causing mendelian forms of nephrolithiasis (monogenic traits) to common but phenotypically mild variants associated with nephrolithiasis (polygenic traits). About two-thirds of the genes currently known to be associated with nephrolithiasis code for membrane proteins or enzymes involved in renal tubular transport. The thick ascending limb of Henle and connecting tubules are of paramount importance for renal water and electrolyte handling, urinary concentration and maintenance of acid-base homeostasis. In most instances, pathogenic variants in genes involved in thick ascending limb of Henle and connecting tubule function result in phenotypically severe disease, frequently accompanied by nephrocalcinosis with progressive CKD and to a variable degree by nephrolithiasis. The aim of this article is to review the current knowledge on kidney stone disease associated with inherited defects in the thick ascending loop of Henle and the connecting tubules. We also highlight recent advances in the field of kidney stone genetics that have implications beyond rare disease, offering new insights into the most common type of kidney stone disease, i.e., idiopathic calcium stone disease.
Collapse
|
15
|
Shah RJ, Lieske JC. Inching toward a Greater Understanding of Genetic Hypercalciuria: The Role of Claudins. Clin J Am Soc Nephrol 2018; 13:1460-1462. [PMID: 30232135 PMCID: PMC6218823 DOI: 10.2215/cjn.10030818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ronak Jagdeep Shah
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | |
Collapse
|