1
|
Lee BK, Thomas CP. Genetic testing in the evaluation of recipient candidates and living kidney donors. Curr Opin Nephrol Hypertens 2024; 33:4-12. [PMID: 37823847 DOI: 10.1097/mnh.0000000000000934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
PURPOSE OF REVIEW The aim of this study is to provide an overview of the role of genetic testing in the evaluation of kidney transplant candidates and living donors who may be at risk for heritable kidney disease. We focus our discussion on monogenic diseases, excluding renal diseases that have complex polygenic influences. Adoption of new technologies such as next-generation sequencing (NGS) with comprehensive gene panels has greatly enabled access to genetic testing recently; yet transplant professionals rarely receive adequate training in clinical genetics. In addition to a broad discussion of genetic testing, we hope to illustrate the thought processes and resources used in clinical genetic evaluation of recipient candidates and donors. RECENT FINDINGS Targeted renal genetic panels, whole exome and genome sequencing have greatly expanded our ability to test for pathogenic variants. Testing methods, analytic tools and the subsequent interpretation by the testing laboratory and treating physician impacts patient management and clinicians may lack the resources to practice in this new era of genomic medicine. SUMMARY The expansion of genomics into transplant medicine can provide improved diagnosis in transplant candidates and potentially disease prediction in living donors. Transplant professionals need to be familiar with emerging trends, promises and limitations of NGS-based testing.
Collapse
Affiliation(s)
- Brian K Lee
- Kidney/Pancreas Transplant Center, Dell Seton Medical Center, University of Texas at Austin, Austin, Texas
| | - Christie P Thomas
- Department of Internal Medicine and Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City
- VA Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Peek JL, Wilson MH. Cell and gene therapy for kidney disease. Nat Rev Nephrol 2023:10.1038/s41581-023-00702-3. [PMID: 36973494 DOI: 10.1038/s41581-023-00702-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
Kidney disease is a leading cause of morbidity and mortality across the globe. Current interventions for kidney disease include dialysis and renal transplantation, which have limited efficacy or availability and are often associated with complications such as cardiovascular disease and immunosuppression. There is therefore a pressing need for novel therapies for kidney disease. Notably, as many as 30% of kidney disease cases are caused by monogenic disease and are thus potentially amenable to genetic medicine, such as cell and gene therapy. Systemic disease that affects the kidney, such as diabetes and hypertension, might also be targetable by cell and gene therapy. However, although there are now several approved gene and cell therapies for inherited diseases that affect other organs, none targets the kidney. Promising recent advances in cell and gene therapy have been made, including in the kidney research field, suggesting that this form of therapy might represent a potential solution for kidney disease in the future. In this Review, we describe the potential for cell and gene therapy in treating kidney disease, focusing on recent genetic studies, key advances and emerging technologies, and we describe several crucial considerations for renal genetic and cell therapies.
Collapse
Affiliation(s)
- Jennifer L Peek
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Matthew H Wilson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Veterans Affairs, Tennessee Valley Health Services, Nashville, TN, USA.
| |
Collapse
|
3
|
Which patients with CKD will benefit from genomic sequencing? Synthesizing progress to illuminate the future. Curr Opin Nephrol Hypertens 2022; 31:541-547. [PMID: 36093902 PMCID: PMC9594128 DOI: 10.1097/mnh.0000000000000836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE OF REVIEW This review will summarize and synthesize recent findings in regard to monogenic kidney disorders, including how that evidence is being translated into practice. It will add to existing key knowledge to provide context for clinicians in consolidating existing practice and approaches. RECENT FINDINGS Whilst there are long established factors, which indicate increased likelihood of identifying a monogenic cause for kidney disease, these can now be framed in terms of the identification of new genes, new indications for genomic testing and new evidence for clinical utility of genomic testing in nephrology. Further, inherent in the use of genomics in nephrology are key concepts including robust informed consent, variant interpretation and return of results. Recent findings of variants in genes related to complex or broader kidney phenotypes are emerging in addition to understanding of de novo variants. Phenocopy phenomena are indicating a more pragmatic use of broader gene panels whilst evidence is emerging of a role in unexplained kidney disease. Clinical utility is evolving but is being successfully demonstrated across multiple domains of outcome and practice. SUMMARY We provide an updated framework of evidence to guide application of genomic testing in chronic kidney disease (CKD), building upon existing principles and knowledge to indicate how the practice and implementation of this can be applied today. There are clearly established roles for genomic testing for some patients with CKD, largely those with suspected heritable forms, with these continuing to expand as new evidence emerges.
Collapse
|
4
|
Devarajan P, Chertow GM, Susztak K, Levin A, Agarwal R, Stenvinkel P, Chapman AB, Warady BA. Emerging Role of Clinical Genetics in CKD. Kidney Med 2022; 4:100435. [PMID: 35372818 PMCID: PMC8971313 DOI: 10.1016/j.xkme.2022.100435] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Chronic kidney disease (CKD) afflicts 15% of adults in the United States, of whom 25% have a family history. Genetic testing is supportive in identifying and possibly confirming diagnoses of CKD, thereby guiding care. Advances in the clinical genetic evaluation include next-generation sequencing with targeted gene panels, whole exome sequencing, and whole genome sequencing. These platforms provide DNA sequence reads with excellent coverage throughout the genome and have identified novel genetic causes of CKD. New pathologic genetic variants identified in previously unrecognized biological pathways have elucidated disease mechanisms underlying CKD etiologies, potentially establishing prognosis and guiding treatment selection. Molecular diagnoses using genetic sequencing can detect rare, potentially treatable mutations, avoid misdiagnoses, guide selection of optimal therapy, and decrease the risk of unnecessary and potentially harmful interventions. Genetic testing has been widely adopted in pediatric nephrology; however, it is less frequently used to date in adult nephrology. Extension of clinical genetic approaches to adult patients may achieve similar benefits in diagnostic refinement and treatment selection. This review aimed to identify clinical CKD phenotypes that may benefit the most from genetic testing, outline the commonly available platforms, and provide examples of successful deployment of these approaches in CKD.
Collapse
Affiliation(s)
- Prasad Devarajan
- Division of Nephrology and Hypertension, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH
| | | | - Katalin Susztak
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Adeera Levin
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rajiv Agarwal
- Division of Nephrology, Indiana University, Indianapolis, IN
| | - Peter Stenvinkel
- Department of Renal Medicine, Karolinska University Hospital at Huddinge, Karolinkska Institutet, Stockholm, Sweden
| | | | - Bradley A. Warady
- Division of Pediatric Nephrology, Children’s Mercy Kansas City, Kansas City, MO
| |
Collapse
|
5
|
Pisani I, Allinovi M, Palazzo V, Zanelli P, Gentile M, Farina MT, Giuliotti S, Cravedi P, Delsante M, Maggiore U, Fiaccadori E, Manenti L. OUP accepted manuscript. Clin Kidney J 2022; 15:1179-1187. [PMID: 35664268 PMCID: PMC9155219 DOI: 10.1093/ckj/sfac032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 11/15/2022] Open
Abstract
Background Methods Results Conclusions
Collapse
Affiliation(s)
- Isabella Pisani
- Unità Operativa Nefrologia, Azienda-Ospedaliero Universitaria di Parma & Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Marco Allinovi
- Nephrology, Dialysis and Transplantation Unit, Careggi University Hospital, Florence, Italy
| | - Viviana Palazzo
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Paola Zanelli
- Unità di Immunogenetica dei Trapianti, Azienda-Ospedaliero Universitaria di Parma, Parma, Italy
| | - Micaela Gentile
- Unità Operativa Nefrologia, Azienda-Ospedaliero Universitaria di Parma & Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Maria Teresa Farina
- Unità Operativa Nefrologia, Azienda-Ospedaliero Universitaria di Parma & Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Sara Giuliotti
- Unità Operativa Radiologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Paolo Cravedi
- Department of Medicine, Renal Division, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Marco Delsante
- Unità Operativa Nefrologia, Azienda-Ospedaliero Universitaria di Parma & Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Umberto Maggiore
- Unità Operativa Nefrologia, Azienda-Ospedaliero Universitaria di Parma & Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Enrico Fiaccadori
- Unità Operativa Nefrologia, Azienda-Ospedaliero Universitaria di Parma & Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | | |
Collapse
|
6
|
Zhang J, Zhang C, Gao E, Zhou Q. Next-Generation Sequencing-Based Genetic Diagnostic Strategies of Inherited Kidney Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2021; 7:425-437. [PMID: 34901190 DOI: 10.1159/000519095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND At least 10% of adults and most of the children who receive renal replacement therapy have inherited kidney diseases. These disorders substantially decrease their life quality and have a large effect on the health-care system. Multisystem complications, with typical challenges for rare disorders, including variable phenotypes and fragmented clinical and biological data, make genetic diagnosis of inherited kidney disorders difficult. In current clinical practice, genetic diagnosis is important for clinical management, estimating disease development, and applying personal treatment for patients. SUMMARY Inherited kidney diseases comprise hundreds of different disorders. Here, we have summarized various monogenic kidney disorders. These disorders are caused by mutations in genes coding for a wide range of proteins including receptors, channels/transporters, enzymes, transcription factors, and structural components that might also have a role in extrarenal organs (bone, eyes, brain, skin, ear, etc.). With the development of next-generation sequencing technologies, genetic testing and analysis become more accessible, promoting our understanding of the pathophysiologic mechanisms of inherited kidney diseases. However, challenges exist in interpreting the significance of genetic variants and translating them to guide clinical managements. Alport syndrome is chosen as an example to introduce the practical application of genetic testing and diagnosis on inherited kidney diseases, considering its clinical features, genetic backgrounds, and genetic testing for making a genetic diagnosis. KEY MESSAGES Recent advances in genomics have highlighted the complexity of Mendelian disorders, which is due to allelic heterogeneity (distinct mutations in the same gene produce distinct phenotypes), locus heterogeneity (mutations in distinct genes result in similar phenotypes), reduced penetrance, variable expressivity, modifier genes, and/or environmental factors. Implementation of precision medicine in clinical nephrology can improve the clinical diagnostic rate and treatment efficiency of kidney diseases, which requires a good understanding of genetics for nephrologists.
Collapse
Affiliation(s)
- Jiahui Zhang
- Life Sciences Institute, The Key Laboratory of Biosystems Homeostasis & Protection of Ministry of Education, Zhejiang University, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Changming Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Zhejiang University School of Medicine, Hangzhou, China
| | - Erzhi Gao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qing Zhou
- Life Sciences Institute, The Key Laboratory of Biosystems Homeostasis & Protection of Ministry of Education, Zhejiang University, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
7
|
Thomas CP, Gupta S, Freese ME, Chouhan KK, Dantuma MI, Holanda DG, Katz DA, Darbro BW, Mansilla MA, Smith RJ. Sequential genetic testing of living-related donors for inherited renal disease to promote informed choice and enhance safety of living donation. Transpl Int 2021; 34:2696-2705. [PMID: 34632641 DOI: 10.1111/tri.14133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/09/2023]
Abstract
Living kidney donors (LKDs) with a family history of renal disease are at risk of kidney disease as compared to LKDs without such history suggesting that some LKDs may be pre-symptomatic for monogenic kidney disease. LKDs with related transplant candidates whose kidney disease was considered genetic in origin were selected for genetic testing. In each case, the transplant candidate was first tested to verify the genetic diagnosis. A genetic diagnosis was confirmed in 12 of 24 transplant candidates (ADPKD-PKD1: 6, ALPORT-COL4A3: 2, ALPORT-COL4A5: 1: nephronophthisis-SDCCAG8: 1; CAKUT-HNF1B and ADTKD-MUC1: 1 each) and 2 had variants of unknown significance (VUS) in phenotype-relevant genes. Focused genetic testing was then done in 20 of 34 LKDs. 12 LKDs screened negative for the familial variant and were permitted to donate; seven screened positive and were counseled against donation. One, the heterozygous carrier of a recessive disorder was also cleared. Six of seven LKDs with a family history of ADPKD were under 30 years and in 5, by excluding ADPKD, allowed donation to safely proceed. The inclusion of genetic testing clarified the diagnosis in recipient candidates, improving safety or informed decision-making in LKDs.
Collapse
Affiliation(s)
- Christie P Thomas
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Department of Pediatrics, University of Iowa, Iowa City, IA, USA.,Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Sonali Gupta
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Margaret E Freese
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Maisie I Dantuma
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| | | | - Daniel A Katz
- Department of Surgery, University of Iowa, Iowa City, IA, USA
| | - Benjamin W Darbro
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA.,Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| | - Maria A Mansilla
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| | - Richard J Smith
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Department of Pediatrics, University of Iowa, Iowa City, IA, USA.,Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
8
|
Wang X, Xiao H, Yao Y, Xu K, Liu X, Su B, Zhang H, Guan N, Zhong X, Zhang Y, Ding J, Wang F. Spectrum of Mutations in Pediatric Non-glomerular Chronic Kidney Disease Stages 2-5. Front Genet 2021; 12:697085. [PMID: 34295353 PMCID: PMC8290170 DOI: 10.3389/fgene.2021.697085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Renal hypodysplasia and cystic kidney diseases, the common non-glomerular causes of pediatric chronic kidney disease (CKD), are usually diagnosed by their clinical and imaging characteristics. The high degree of phenotypic heterogeneity, in both conditions, makes the correct final diagnosis dependent on genetic testing. It is not clear, however, whether the frequencies of damaged alleles vary among different ethnicities in children with non-glomerular CKD, and this will influence the strategy used for genetic testing. In this study, 69 unrelated children (40 boys, 29 girls) of predominantly Han Chinese ethnicity with stage 2-5 non-glomerular CKD caused by suspected renal hypodysplasia or cystic kidney diseases were enrolled and assessed by molecular analysis using proband-only targeted exome sequencing and array-comparative genomic hybridization. Targeted exome sequencing discovered genetic etiologies in 33 patients (47.8%) covering 10 distinct genetic disorders. The clinical diagnoses in 13/48 patients (27.1%) with suspected renal hypodysplasia were confirmed, and two patients were reclassified carrying mutations in nephronophthisis (NPHP) genes. The clinical diagnoses in 16/20 patients (80%) with suspected cystic kidney diseases were confirmed, and one patient was reclassified as carrying a deletion in the hepatocyte nuclear factor-1-beta gene (HNF1B). The diagnosis of one patient with unknown non-glomerular disease was elucidated. No copy number variations were identified in the 20 patients with negative targeted exome sequencing results. NPHP genes were the most common disease-causing genes in the patients with disease onsets above 6 years of age (14/45, 31.1%). The children with stage 2 and 3 CKD at onset were found to carry causative mutations in paired box gene 2 (PAX2) and HNF1B gene (11/24, 45.8%), whereas those with stage 4 and 5 CKD mostly carried causative mutations in NPHP genes (19/45, 42.2%). The causative genes were not suspected by the kidney imaging patterns at disease onset. Thus, our data show that in Chinese children with non-glomerular renal dysfunction caused by renal hypodysplasia and cystic kidney diseases, the common causative genes vary with age and CKD stage at disease onset. These findings have the potential to improve management and genetic counseling of these diseases in clinical practice.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Huijie Xiao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yong Yao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ke Xu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaoyu Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Baige Su
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hongwen Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Na Guan
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xuhui Zhong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yanqin Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Fang Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
9
|
Wicher D, Obrycki Ł, Jankowska I. Autosomal Recessive Polycystic Kidney Disease-The Clinical Aspects and Diagnostic Challenges. J Pediatr Genet 2021; 10:1-8. [PMID: 33552631 DOI: 10.1055/s-0040-1714701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/18/2020] [Indexed: 01/07/2023]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is one of the most common ciliopathies with kidney (nephromegaly, hypertension, renal dysfunction) and liver involvement (congenital hepatic fibrosis, dilated bile ducts). Clinical features also include growth failure and neurocognitive impairment. Plurality of clinical aspects requires multidisciplinary approach to treatment and care of patients. Until recently, diagnosis was based on clinical criteria. Results of genetic testing show the molecular basis of polycystic kidneys disease is heterogeneous, and differential diagnosis is essential. The aim of the article is to discuss the role of genetic testing and its difficulties in diagnostics of ARPKD in children.
Collapse
Affiliation(s)
- Dorota Wicher
- Department of Medical Genetics, Children's Memorial Health Institute, Warsaw, Poland
| | - Łukasz Obrycki
- Department of Nephrology, Kidney Transplantation and Hypertension, Children's Memorial Health Institute, Warsaw, Poland
| | - Irena Jankowska
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
10
|
Casanova JL, Abel L. Lethal Infectious Diseases as Inborn Errors of Immunity: Toward a Synthesis of the Germ and Genetic Theories. ANNUAL REVIEW OF PATHOLOGY 2021; 16:23-50. [PMID: 32289233 PMCID: PMC7923385 DOI: 10.1146/annurev-pathol-031920-101429] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It was first demonstrated in the late nineteenth century that human deaths from fever were typically due to infections. As the germ theory gained ground, it replaced the old, unproven theory that deaths from fever reflected a weak personal or even familial constitution. A new enigma emerged at the turn of the twentieth century, when it became apparent that only a small proportion of infected individuals die from primary infections with almost any given microbe. Classical genetics studies gradually revealed that severe infectious diseases could be driven by human genetic predisposition. This idea gained ground with the support of molecular genetics, in three successive, overlapping steps. First, many rare inborn errors of immunity were shown, from 1985 onward, to underlie multiple, recurrent infections with Mendelian inheritance. Second, a handful of rare and familial infections, also segregating as Mendelian traits but striking humans resistant to other infections, were deciphered molecularly beginning in 1996. Third, from 2007 onward, a growing number of rare or common sporadicinfections were shown to result from monogenic, but not Mendelian, inborn errors. A synthesis of the hitherto mutually exclusive germ and genetic theories is now in view.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA;
- Howard Hughes Medical Institute, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Paris University, Imagine Institute, 75015 Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015 Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA;
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Paris University, Imagine Institute, 75015 Paris, France
| |
Collapse
|
11
|
Becherucci F, Landini S, Cirillo L, Mazzinghi B, Romagnani P. Look Alike, Sound Alike: Phenocopies in Steroid-Resistant Nephrotic Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8363. [PMID: 33198123 PMCID: PMC7696007 DOI: 10.3390/ijerph17228363] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Steroid-resistant nephrotic syndrome (SRNS) is a clinical picture defined by the lack of response to standard steroid treatment, frequently progressing toward end-stage kidney disease. The genetic basis of SRNS has been thoroughly explored since the end of the 1990s and especially with the advent of next-generation sequencing. Genetic forms represent about 30% of cases of SRNS. However, recent evidence supports the hypothesis that "phenocopies" could account for a non-negligible fraction of SRNS patients who are currently classified as non-genetic, paving the way for a more comprehensive understanding of the genetic background of the disease. The identification of phenocopies is mandatory in order to provide patients with appropriate clinical management and to inform therapy. Extended genetic testing including phenocopy genes, coupled with reverse phenotyping, is recommended for all young patients with SRNS to avoid unnecessary and potentially harmful diagnostic procedures and treatment, and for the reclassification of the disease. The aim of this work is to review the main steps of the evolution of genetic testing in SRNS, demonstrating how a paradigm shifting from "forward" to "reverse" genetics could significantly improve the identification of the molecular mechanisms of the disease, as well as the overall clinical management of affected patients.
Collapse
Affiliation(s)
- Francesca Becherucci
- Pediatric Nephrology and Dialysis Unit, Meyer Children’s Hospital, Viale Pieraccini 24, 50139 Florence, Italy; (L.C.); (B.M.); (P.R.)
| | - Samuela Landini
- Department of Biomedical, Experimental and Clinical Science “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Luigi Cirillo
- Pediatric Nephrology and Dialysis Unit, Meyer Children’s Hospital, Viale Pieraccini 24, 50139 Florence, Italy; (L.C.); (B.M.); (P.R.)
- Department of Biomedical, Experimental and Clinical Science “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Benedetta Mazzinghi
- Pediatric Nephrology and Dialysis Unit, Meyer Children’s Hospital, Viale Pieraccini 24, 50139 Florence, Italy; (L.C.); (B.M.); (P.R.)
| | - Paola Romagnani
- Pediatric Nephrology and Dialysis Unit, Meyer Children’s Hospital, Viale Pieraccini 24, 50139 Florence, Italy; (L.C.); (B.M.); (P.R.)
- Department of Biomedical, Experimental and Clinical Science “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| |
Collapse
|
12
|
Abstract
The advent of next gene sequencing technology has led to the publication of a profusion of papers on monogenic contributions to pediatric kidney disorders. It started with the discovery of mutations in the podocin gene in steroid resistant nephrotic syndrome (SRNS). It is realized now that genetic disorders contribute to about 30% of chronic renal diseases in children, and significantly to many other kidney disorders. This paper covers briefly the new genetic technologies, the benefits of genetic testing, and the indication for genetic testing in various kidney disorders. It covers SRNS, congenital anomalies of the kidney, cystic kidney disease, tubulopathies, nephronophthisis, Fabry disease, Alport and Lowe syndrome. Atypical hemolytic uremic syndrome, renal tubular acidosis and nephrolithiasis are also covered briefly. It is hoped that this paper will encourage the pediatricians to investigate monogenic disorders of the kidney as it helps in their proper classification, informs prognosis, suggests specific treatment and aids in genetic and reproductive counseling.
Collapse
|
13
|
Spontaneous remission of genetic, apparent primary, FSGS presenting with nephrotic syndrome challenges traditional notions of primary FSGS. J Nephrol 2020; 34:255-258. [PMID: 32852700 DOI: 10.1007/s40620-020-00837-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
|
14
|
Ahram DF, Aggarwal VS, Sanna-Cherchi S. Phenocopies, Phenotypic Expansion, and Coincidental Diagnoses: Time to Abandon Targeted Gene Panels? Am J Kidney Dis 2020; 76:451-453. [PMID: 32807573 DOI: 10.1053/j.ajkd.2020.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/09/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Dina F Ahram
- Division of Nephrology, Columbia University, New York, NY; Department of Pathology & Cell Biology, Columbia University, New York, NY
| | - Vimla S Aggarwal
- Department of Pathology & Cell Biology, Columbia University, New York, NY
| | | |
Collapse
|
15
|
SMRT sequencing revealed to be an effective method for ADTKD-MUC1 diagnosis through follow-up analysis of a Chinese family. Sci Rep 2020; 10:8616. [PMID: 32451462 PMCID: PMC7248079 DOI: 10.1038/s41598-020-65491-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
We reported a large Chinese family diagnosed with autosomal dominant tubulointerstitial kidney disease caused by MUC1 mutation (ADTKD-MUC1). Cytosine duplication within a string of 7 cytosines in the variable-number tandem repeats (VNTR) region of the MUC1 gene was detected by long-read single-molecule real-time (SMRT) sequencing. MUC1 frameshift protein (MUC1fs) was found to be expressed in renal tubules and urinary exfoliated cells by pathological examination. The family, which consisted of 5 generations including 137 individuals, was followed for 5 years. Genetic testing was performed in thirty-four individuals, 17 of whom carried MUC1 mutations. The ADTKD-MUC1-affected individuals had an elevated incidence of hyperuricaemia without gout attack. Within five years, higher baseline levels of urinary α1-microglobulin were detected in affected individuals with rapidly progressing renal failure than in affected individuals with stable renal function, and the increases manifested even before increases in serum creatinine. This study demonstrates that SMRT sequencing is an effective method for the identification of MUC1 mutations. The pathological examination of MUC1fs expression in renal tissue and urinary exfoliated cells can contribute to early screening of family members suspected to be affected. It is suggested that affected individuals with elevated urinary α1-microglobulin levels should be closely monitored for renal function.
Collapse
|
16
|
Initial experience from a renal genetics clinic demonstrates a distinct role in patient management. Genet Med 2020; 22:1025-1035. [PMID: 32203225 PMCID: PMC7272321 DOI: 10.1038/s41436-020-0772-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/25/2020] [Indexed: 01/15/2023] Open
Abstract
Purpose A Renal Genetics Clinic (RGC) was established to optimize diagnostic testing, facilitate genetic counseling, and direct clinical management. Methods Retrospective review of patients seen over a two-year period in the RGC. Results One hundred eleven patients (mean age: 39.9 years) were referred to the RGC: 65 for genetic evaluation, 19 for management of a known genetic disease, and 18 healthy living kidney donors (LKDs) and their 9 related transplant candidates for screening. Forty-three patients underwent genetic testing with a diagnosis in 60% of patients including 9 with Alport syndrome, 7 with autosomal dominant polycystic kidney disease (ADPKD), 2 with genetic focal segmental glomerulosclerosis (FSGS), 2 with PAX2-mediated CAKUT, and 1 each with autosomal recessive polycystic kidney disease (ARPKD), Dent, Frasier, Gordon, Gitelman, and Zellweger syndromes. Four of 18 LKDs were referred only for APOL1 screening. For the remaining 14 LKDs, their transplant candidates were first tested to establish a genetic diagnosis. Five LKDs tested negative for the familial genetic variant, four were positive for their familial variant. In five transplant candidates, a genetic variant could not be identified. Conclusion An RGC that includes genetic counseling enhances care of renal patients by improving diagnosis, directing management, affording presymptomatic family focused genetic counseling, and assisting patients and LKDs to make informed decisions.
Collapse
|
17
|
de Haan A, Eijgelsheim M, Vogt L, Knoers NVAM, de Borst MH. Diagnostic Yield of Next-Generation Sequencing in Patients With Chronic Kidney Disease of Unknown Etiology. Front Genet 2019; 10:1264. [PMID: 31921302 PMCID: PMC6923268 DOI: 10.3389/fgene.2019.01264] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Advances in next-generation sequencing (NGS) techniques, including whole exome sequencing, have facilitated cost-effective sequencing of large regions of the genome, enabling the implementation of NGS in clinical practice. Chronic kidney disease (CKD) is a major contributor to global burden of disease and is associated with an increased risk of morbidity and mortality. CKD can be caused by a wide variety of primary renal disorders. In about one in five CKD patients, no primary renal disease diagnosis can be established. Moreover, recent studies indicate that the clinical diagnosis may be incorrect in a substantial number of patients. Both the absence of a diagnosis or an incorrect diagnosis can have therapeutic implications. Genetic testing might increase the diagnostic accuracy in patients with CKD, especially in patients with unknown etiology. The diagnostic utility of NGS has been shown mainly in pediatric CKD cohorts, while emerging data suggest that genetic testing can also be a valuable diagnostic tool in adults with CKD. In addition to its implications for unexplained CKD, NGS can contribute to the diagnostic process in kidney diseases with an atypical presentation, where it may lead to reclassification of the primary renal disease diagnosis. So far, only a few studies have reported on the diagnostic yield of NGS-based techniques in patients with unexplained CKD. Here, we will discuss the potential diagnostic role of gene panels and whole exome sequencing in pediatric and adult patients with unexplained and atypical CKD.
Collapse
Affiliation(s)
- Amber de Haan
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mark Eijgelsheim
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Liffert Vogt
- Section Nephrology, Amsterdam Cardiovascular Sciences, Department of Internal Medicine, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Nine V. A. M. Knoers
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Martin H. de Borst
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
18
|
Goldfarb DS. Editorial: Controversies in kidney stones and other chronic kidney disease topics. Curr Opin Nephrol Hypertens 2019; 28:128-129. [PMID: 30585853 PMCID: PMC6452882 DOI: 10.1097/mnh.0000000000000485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- David S Goldfarb
- Nephrology Division, New York University Langone Health, NY Harbor VA Medical Center, NYU School of Medicine, New York, New York, USA
| |
Collapse
|