1
|
Mukherjee SD, Batagello CA, Adler A, Agudelo J, Zampini A, Suryavanshi M, Nguyen A, Orr T, Dearing D, Monga M, Miller AW. Complex system modelling reveals oxalate homeostasis is driven by diverse oxalate-degrading bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620613. [PMID: 39553961 PMCID: PMC11565779 DOI: 10.1101/2024.10.28.620613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Decades of research have made clear that host-associated microbiomes touch all facets of health. However, effective therapies that target the microbiome have been elusive given its inherent complexity. Here, we experimentally examined diet-microbe-host interactions through a complex systems framework, centered on dietary oxalate. Using multiple, independent molecular, animal, and in vitro experimental models, we found that microbiome composition influenced multiple oxalate-microbe-host interfaces. Importantly, administration of the oxalate-degrading specialist, Oxalobacter formigenes, was only effective against a poor oxalate-degrading microbiota background and gives critical new insights into why clinical intervention trials with this species exhibit variable outcomes. Data suggest that, while heterogeneity in the microbiome impacts multiple diet-host-microbe interfaces, metabolic redundancy among diverse microorganisms in specific diet-microbe axes is a critical variable that may impact the efficacy of bacteriotherapies, which can help guide patient and probiotic selection criteria in probiotic clinical trials.
Collapse
Affiliation(s)
- Sromona D. Mukherjee
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Carlos A. Batagello
- Division of Urology, Hospital das Clínicas, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Ava Adler
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jose Agudelo
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Anna Zampini
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mangesh Suryavanshi
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew Nguyen
- M Health Fairview Southdale Hospital, Edina, MN, USA
| | - Teri Orr
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Denise Dearing
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Manoj Monga
- Department of Urology, University of California San Diego, San Diego, CA, USA
| | - Aaron W. Miller
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
2
|
Samra M, Gupta I. From Smoothies to Dialysis: The Impact of Oxalate Nephropathy. Cureus 2024; 16:e67409. [PMID: 39310402 PMCID: PMC11414766 DOI: 10.7759/cureus.67409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Oxalate nephropathy is a rare cause of acute kidney injury that can lead to end-stage renal disease. This case report describes a 54-year-old male with type 2 diabetes mellitus and chronic kidney disease who presented for a routine clinic follow-up. Laboratory tests revealed significant deterioration in renal function with an unrevealing history and symptoms suggestive of the process. Initial investigations for worsening renal function were inconclusive, prompting a renal biopsy that confirmed acute tubular injury with abundant calcium oxalate deposits. Further investigation into dietary history revealed that the patient regularly consumed high-oxalate foods, such as spinach and kale smoothies, under the impression they were beneficial for his diabetes. Despite the initiation of hemodialysis, the patient did not recover renal function and remains dialysis-dependent. This case underscores the need for a high index of suspicion for oxalate nephropathy in chronic kidney disease patients presenting with unexplained acute kidney injury. Diagnosis is confirmed through renal biopsy and should be considered in patients with relevant dietary histories.
Collapse
Affiliation(s)
| | - Isha Gupta
- Nephrology, Middletown Medical, Middletown, USA
- Nephrology, Garnet Health Medical Center, Middletown, USA
- Internal Medicine/Nephrology, Touro College of Osteopathic Medicine, Middletown, USA
| |
Collapse
|
3
|
Balawender K, Łuszczki E, Mazur A, Wyszyńska J. The Multidisciplinary Approach in the Management of Patients with Kidney Stone Disease-A State-of-the-Art Review. Nutrients 2024; 16:1932. [PMID: 38931286 PMCID: PMC11206918 DOI: 10.3390/nu16121932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/15/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Kidney stone disease has a multifactorial etiology, and evolving dietary habits necessitate continuous updates on the impact of dietary components on lithogenesis. The relationship between diseases influenced by lifestyle, such as obesity and diabetes, and kidney stone risk underscores the need for comprehensive lifestyle analysis. Effective management of kidney stones requires a multidisciplinary approach, involving collaboration among nutritionists, urologists, nephrologists, and other healthcare professionals to address the complex interactions between diet, lifestyle, and individual susceptibility. Personalized dietary therapy, based on each patient's unique biochemical and dietary profile, is essential and necessitates comprehensive nutritional assessments. Accurate dietary intake evaluation is best achieved through seven-day, real-time dietary records. Key factors influencing urinary risk include fluid intake, dietary protein, carbohydrates, oxalate, calcium, and sodium chloride. Personalized interventions, such as customized dietary changes based on gut microbiota, may improve stone prevention and recurrence. Current research suggests individualized guidance on alcohol intake and indicates that tea and coffee consumption might protect against urolithiasis. There is potential evidence linking tobacco use and secondhand smoke to increased kidney stone risk. The effects of vitamins and physical activity on kidney stone risk remain unresolved due to mixed evidence. For diseases influenced by lifestyle, conclusive evidence on targeted interventions for nephrolithiasis prevention is lacking, though preliminary research suggests potential benefits. Management strategies emphasize lifestyle modifications to reduce recurrence risks, support rapid recovery, and identify predisposing conditions, highlighting the importance of these changes despite inconclusive data.
Collapse
Affiliation(s)
- Krzysztof Balawender
- Institute of Medical Sciences, Medical College of Rzeszow University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszow, Poland;
- Clinical Department of Urology and Urological Oncology, Municipal Hospital, Rycerska 4, 35-241 Rzeszow, Poland
| | - Edyta Łuszczki
- Institute of Health Sciences, Medical College of Rzeszow University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszow, Poland; (E.Ł.); (J.W.)
| | - Artur Mazur
- Institute of Medical Sciences, Medical College of Rzeszow University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszow, Poland;
| | - Justyna Wyszyńska
- Institute of Health Sciences, Medical College of Rzeszow University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszow, Poland; (E.Ł.); (J.W.)
| |
Collapse
|
4
|
Chen D, Xie Y, Luo Q, Fan W, Liu G. Association between weight-adjusted waist index and kidney stones: a propensity score matching study. Front Endocrinol (Lausanne) 2024; 15:1266761. [PMID: 38911038 PMCID: PMC11193331 DOI: 10.3389/fendo.2024.1266761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Objective This study aimed to investigate the association between weight-adjusted waist index (WWI), a novel adiposity index, and kidney stone (KS). Methods Data were obtained from the National Health and Nutrition Examination Survey 2007-2018. According to the history of KS, participants were divided into the non-stone group and the stone group. Weighted multivariable logistic regression analyses were used to evaluate the correlation between WWI and KS in unadjusted, partially adjusted, and all-adjusted models. A restricted cubic spline (RCS) analysis assessed the association between continuous WWI and KS risk and obtained the risk function inflection point. Then, subgroup analysis based on the risk function inflection point was conducted to dissect the association in specific subgroups. In addition, the above analyst methods were repeatedly performed in populations after propensity score matching (PSM). The receiver operating characteristic (ROC) curve was applied to compare the ability to predict KS occurrence among WWI, visceral adiposity index (VAI), and body mass index (BMI). Results Weighted multivariable logistic regression analyses found a positive association between continuous WWI and KS risk in the all-adjusted model [odds ratio (OR) = 1.03; 95% confidence interval (CI), 1.02-1.04; P < 0.001]. In further analysis, the Q4 WWI group was linked to the highest KS risk when compared to the Q1-Q3 group (OR = 1.06; 95% CI, 1.05-1.08, P < 0.001). RCS analysis found a linear significant correlation between continuous WWI and KS risk, and the risk function inflection point is 11.08 cm/√kg. Subgroup analysis confirmed that WWI was associated with KS risk in different groups. After PSM, increased WWI was still related to a high risk of KS. Moreover, the ROC curve demonstrated that WWI has a higher predictive ability of KS occurrence than VAI and BMI (area under curve, 0.612 vs. 0.581 vs. 0.569). Conclusion In the US adult population, elevated WWI value was associated with an increased risk of KS. Furthermore, WWI was a better predictor of KS occurrence than VAI and BMI.
Collapse
Affiliation(s)
- Di Chen
- Department of Urology, Reproductive Hospital of Guangxi Zhuang Autonomous Region, Naning, China
- Graduate School, Guangxi Medical University, Nanning, China
| | - Yurun Xie
- The Department of Urology, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, China
| | - Quanhai Luo
- Department of Urology, Reproductive Hospital of Guangxi Zhuang Autonomous Region, Naning, China
| | - Wenji Fan
- The Department of Urology, The Second People’s Hospital of Nanning, Naning, China
| | - Gang Liu
- Department of Urology, Reproductive Hospital of Guangxi Zhuang Autonomous Region, Naning, China
| |
Collapse
|
5
|
Puurunen M, Kurtz C, Wheeler A, Mulder K, Wood K, Swenson A, Curhan G. Twenty-four-hour urine oxalate and risk of chronic kidney disease. Nephrol Dial Transplant 2024; 39:788-794. [PMID: 37804181 DOI: 10.1093/ndt/gfad221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND To assess whether 24-h urine oxalate (UOx) excretion is a risk factor for incident chronic kidney disease (CKD). METHODS This longitudinal observational USA-based study included 426 896 individuals aged ≥18 years with no CKD at baseline and with at least one UOx, and at least 6 months of baseline and 6 months of follow-up data. Of these, 11 239 (2.6%) had an underlying malabsorptive condition. Incident CKD, defined by relevant International Classification of Diseases codes, was identified from a multi-source data cloud containing individual-level healthcare claims and electronic medical records data. The association between categories of UOx and incident CKD was modeled using logistic regression adjusting for age, sex, race, body mass index, baseline urine calcium, urine citrate, urine volume, tobacco use, hypertension, diabetes, malabsorption and cardiovascular disease. RESULTS Mean follow-up time was 38.9 months (standard deviation 21.7). Compared with individuals with UOx <20 mg/24 h, the odds of developing incident CKD increased for UOx 20-29 mg/24 h [multivariable-adjusted odds ratio (MVOR) 1.14 (95% CI 1.07, 1.21)] through 80+ mg/24 h [MVOR 1.35 (1.21, 1.50)] and was statistically significant for each UOx category. A similar pattern was seen in the subgroup with a malabsorptive condition though the magnitudes of association were larger, with the odds of developing incident CKD increased for UOx 20-29 mg/24 h [MVOR 1.50 (1.03, 2.20)] through 80+ mg/24 h [MVOR 2.34 (1.50, 3.63)] as compared with UOx <20 mg/24 h. CONCLUSIONS The risk of incident CKD increases with increasing 24-h UOx excretion. Future studies should examine whether reducing UOx diminishes the risk of developing CKD.
Collapse
Affiliation(s)
| | | | | | | | - Kyle Wood
- University of Alabama, Birmingham, AL, USA
| | | | | |
Collapse
|
6
|
Filler G, Dave S, Ritter V, Ross S, Viprakasit D, Hatch JE, Bjazevic J, Burton J, Gilleskie D, Gilliland J, Lin FC, Jain N, McClure JA, Razvi H, Bhayana V, Wang P, Coulson S, Sultan N, Denstedt J, Fearrington L, Diaz-Gonzalez de Ferris ME. In focus: perplexing increase of urinary stone disease in children, adolescent and young adult women and its economic impact. Front Med (Lausanne) 2023; 10:1272900. [PMID: 37937142 PMCID: PMC10626457 DOI: 10.3389/fmed.2023.1272900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Background Urinary stone disease (USD) historically has affected older men, but studies suggest recent increases in women, leading to a near identical sex incidence ratio. USD incidence has doubled every 10 years, with disproportionate increases amongst children, adolescent, and young adult (AYA) women. USD stone composition in women is frequently apatite (calcium phosphate), which forms in a higher urine pH, low urinary citrate, and an abundance of urinary uric acid, while men produce more calcium oxalate stones. The reasons for this epidemiological trend are unknown. Methods This perspective presents the extent of USD with data from a Canadian Province and a North American institution, explanations for these findings and offers potential solutions to decrease this trend. We describe the economic impact of USD. Findings There was a significant increase of 46% in overall surgical interventions for USD in Ontario. The incidence rose from 47.0/100,000 in 2002 to 68.7/100,000 population in 2016. In a single United States institution, the overall USD annual unique patient count rose from 10,612 to 17,706 from 2015 to 2019, and the proportion of women with USD was much higher than expected. In the 10-17-year-old patients, 50.1% were girls; with 57.5% in the 18-34 age group and 53.6% in the 35-44 age group. The roles of obesity, diet, hormones, environmental factors, infections, and antibiotics, as well as the economic impact, are discussed. Interpretation We confirm the significant increase in USD among women. We offer potential explanations for this sex disparity, including microbiological and pathophysiological aspects. We also outline innovative solutions - that may require steps beyond typical preventive and treatment recommendations.
Collapse
Affiliation(s)
- Guido Filler
- Department of Paediatrics, Western University, London, ON, Canada
- Department of Medicine, Western University, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Sumit Dave
- Department of Surgery, Western University, London, ON, Canada
| | - Victor Ritter
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sherry Ross
- Department of Urology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Davis Viprakasit
- Department of Urology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Joseph E. Hatch
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | - Jeremy Burton
- Department of Surgery, Western University, London, ON, Canada
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Donna Gilleskie
- Department of Economics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jason Gilliland
- Department of Geography, Western University, London, ON, Canada
| | - Feng-Chang Lin
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nina Jain
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | - Hassan Razvi
- Department of Surgery, Western University, London, ON, Canada
| | - Vipin Bhayana
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Peter Wang
- Department of Surgery, Western University, London, ON, Canada
| | - Sherry Coulson
- Department of Paediatrics, Western University, London, ON, Canada
| | - Nabil Sultan
- Department of Medicine, Western University, London, ON, Canada
| | - John Denstedt
- Department of Surgery, Western University, London, ON, Canada
| | - Loretta Fearrington
- North Carolina Translational and Clinical Sciences Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | |
Collapse
|
7
|
Arvans D, Chang C, Alshaikh A, Tesar C, Babnigg G, Wolfgeher D, Kron S, Antonopoulos D, Bashir M, Cham C, Musch M, Chang E, Joachimiak A, Hassan H. Sel1-like proteins and peptides are the major Oxalobacter formigenes-derived factors stimulating oxalate transport by human intestinal epithelial cells. Am J Physiol Cell Physiol 2023; 325:C344-C361. [PMID: 37125773 PMCID: PMC10393326 DOI: 10.1152/ajpcell.00466.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 05/02/2023]
Abstract
Kidney stones (KSs) are very common, excruciating, and associated with tremendous healthcare cost, chronic kidney disease (CKD), and kidney failure (KF). Most KSs are composed of calcium oxalate and small increases in urinary oxalate concentration significantly enhance the stone risk. Oxalate also potentially contributes to CKD progression, kidney disease-associated cardiovascular diseases, and poor renal allograft survival. This emphasizes the urgent need for plasma and urinary oxalate lowering therapies, which can be achieved by enhancing enteric oxalate secretion. We previously identified Oxalobacter formigenes (O. formigenes)-derived factors secreted in its culture-conditioned medium (CM), which stimulate oxalate transport by human intestinal Caco2-BBE (C2) cells and reduce urinary oxalate excretion in hyperoxaluric mice by enhancing colonic oxalate secretion. Given their remarkable therapeutic potential, we now identified Sel1-like proteins as the major O. formigenes-derived secreted factors using mass spectrometry and functional assays. Crystal structures for six proteins were determined to confirm structures and better understand functions. OxBSel1-14-derived small peptides P8 and P9 were identified as the major factors, with P8 + 9 closely recapitulating the CM's effects, acting through the oxalate transporters SLC26A2 and SLC26A6 and PKA activation. Besides C2 cells, P8 + 9 also stimulate oxalate transport by human ileal and colonic organoids, confirming that they work in human tissues. In conclusion, P8 and P9 peptides are identified as the major O. formigenes-derived secreted factors and they have significant therapeutic potential for hyperoxalemia, hyperoxaluria, and related disorders, impacting the outcomes of patients suffering from KSs, enteric hyperoxaluria, primary hyperoxaluria, CKD, KF, and renal transplant recipients.NEW & NOTEWORTHY We previously identified Oxalobacter formigenes-derived secreted factors stimulating oxalate transport by human intestinal epithelial cells in vitro and reducing urinary oxalate excretion in hyperoxaluric mice by enhancing colonic oxalate secretion. We now identified Sel1-like proteins and small peptides as the major secreted factors and they have significant therapeutic potential for hyperoxalemia and hyperoxaluria, impacting the outcomes of patients suffering from kidney stones, primary and secondary hyperoxaluria, chronic kidney disease, kidney failure, and renal transplant recipients.
Collapse
Affiliation(s)
- Donna Arvans
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, United States
| | - Changsoo Chang
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, Illinois, United States
| | - Altayeb Alshaikh
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, United States
| | - Christine Tesar
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, Illinois, United States
| | - Gyorgy Babnigg
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois, United States
| | - Don Wolfgeher
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States
| | - Stephen Kron
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States
| | | | - Mohamed Bashir
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, United States
| | - Candace Cham
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, United States
| | - Mark Musch
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, United States
| | - Eugene Chang
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, United States
| | - Andrzej Joachimiak
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, Illinois, United States
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States
| | - Hatim Hassan
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, United States
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
8
|
Stepanova N. Oxalate Homeostasis in Non-Stone-Forming Chronic Kidney Disease: A Review of Key Findings and Perspectives. Biomedicines 2023; 11:1654. [PMID: 37371749 PMCID: PMC10296321 DOI: 10.3390/biomedicines11061654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic kidney disease (CKD) is a significant global public health concern associated with high morbidity and mortality rates. The maintenance of oxalate homeostasis plays a critical role in preserving kidney health, particularly in the context of CKD. Although the relationship between oxalate and kidney stone formation has been extensively investigated, our understanding of oxalate homeostasis in non-stone-forming CKD remains limited. This review aims to present an updated analysis of the existing literature, focusing on the intricate mechanisms involved in oxalate homeostasis in patients with CKD. Furthermore, it explores the key factors that influence oxalate accumulation and discusses the potential role of oxalate in CKD progression and prognosis. The review also emphasizes the significance of the gut-kidney axis in CKD oxalate homeostasis and provides an overview of current therapeutic strategies, as well as potential future approaches. By consolidating important findings and perspectives, this review offers a comprehensive understanding of the present knowledge in this field and identifies promising avenues for further research.
Collapse
Affiliation(s)
- Natalia Stepanova
- State Institution «Institute of Nephrology of the National Academy of Medical Sciences of Ukraine», 04050 Kyiv, Ukraine
| |
Collapse
|
9
|
Kafi F, Mortazavi M, Pouramini A, Dolatkhah S, Kaleidari B, Taheri D. Secondary oxalate nephropathy and impact of high-dose vitamin C intake for COVID-19 prevention on a patient with Roux-en-Y gastric bypass: A case report. Clin Case Rep 2023; 11:e7020. [PMID: 36911630 PMCID: PMC9992142 DOI: 10.1002/ccr3.7020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/04/2023] [Accepted: 02/15/2023] [Indexed: 03/11/2023] Open
Abstract
The current study is important in informing clinicians about the possibility of concurrent oxalate nephropathy caused by Roux-en-Y gastric bypass, high oxalate materials, and high-dose vitamin C intake for COVID-19 prevention.
Collapse
Affiliation(s)
- Fatemeh Kafi
- Department of Pathology, Isfahan Kidney Diseases Research CenterIsfahan University of Medical SciencesIsfahanIran
- Urology Research CenterTehran University of Medical SciencesTehranIran
| | - Mojgan Mortazavi
- Isfahan Kidney Diseases Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Alireza Pouramini
- Department of Pathology, Isfahan Kidney Diseases Research CenterIsfahan University of Medical SciencesIsfahanIran
- Urology Research CenterTehran University of Medical SciencesTehranIran
| | | | | | - Diana Taheri
- Department of Pathology, Isfahan Kidney Diseases Research CenterIsfahan University of Medical SciencesIsfahanIran
- Urology Research CenterTehran University of Medical SciencesTehranIran
| |
Collapse
|
10
|
Abstract
Oxalate homeostasis is maintained through a delicate balance between endogenous sources, exogenous supply and excretion from the body. Novel studies have shed light on the essential roles of metabolic pathways, the microbiome, epithelial oxalate transporters, and adequate oxalate excretion to maintain oxalate homeostasis. In patients with primary or secondary hyperoxaluria, nephrolithiasis, acute or chronic oxalate nephropathy, or chronic kidney disease irrespective of aetiology, one or more of these elements are disrupted. The consequent impairment in oxalate homeostasis can trigger localized and systemic inflammation, progressive kidney disease and cardiovascular complications, including sudden cardiac death. Although kidney replacement therapy is the standard method for controlling elevated plasma oxalate concentrations in patients with kidney failure requiring dialysis, more research is needed to define effective elimination strategies at earlier stages of kidney disease. Beyond well-known interventions (such as dietary modifications), novel therapeutics (such as small interfering RNA gene silencers, recombinant oxalate-degrading enzymes and oxalate-degrading bacterial strains) hold promise to improve the outlook of patients with oxalate-related diseases. In addition, experimental evidence suggests that anti-inflammatory medications might represent another approach to mitigating or resolving oxalate-induced conditions.
Collapse
Affiliation(s)
- Theresa Ermer
- Department of Surgery, Division of Thoracic Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Lama Nazzal
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Maria Clarissa Tio
- Division of Nephrology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sushrut Waikar
- Department of Medicine, Section of Nephrology, Boston University, Boston, MA, USA
| | - Peter S Aronson
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT, USA
| | - Felix Knauf
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT, USA.
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
11
|
Fong P, Wusirika R, Rueda J, Raphael KL, Rehman S, Stack M, de Mattos A, Gupta R, Michels K, Khoury FG, Kung V, Andeen NK. Increased Rates of Supplement-Associated Oxalate Nephropathy During COVID-19 Pandemic. Kidney Int Rep 2022; 7:2608-2616. [PMID: 36120391 PMCID: PMC9464307 DOI: 10.1016/j.ekir.2022.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction Causes of secondary oxalate nephropathy include enteric dysfunction and excessive intake of oxalate or oxalate precursors. During the COVID-19 pandemic, there has been a dramatic rise in sales of supplements and vitamin C, during which time we observed an apparent increase in the proportion of ingestion-associated oxalate nephropathy. Methods We retrospectively reviewed secondary oxalate nephropathy and compared pre-pandemic (2018–2019) and pandemic (2020–early 2022) time periods. Results We identified 35 patients with kidney biopsy proven (30 native, 5 allograft) oxalate nephropathy at a single academic institution. Supplement-associated oxalate nephropathy comprised a significantly higher proportion of cases during COVID-19 pandemic compared with the preceding 2 years (44% vs. 0%, P = 0.002), and was associated with use of vitamin C, dietary changes, and supplements. Oxalate nephropathy in the kidney allograft, in contrast, remained associated with enteric hyperoxaluria, antibiotic use, and dehydration. Many patients had diabetes mellitus (57%), hypertension (40%) and/or pre-existing chronic kidney disease (CKD, 49%). Of 9 patients in which the potentially causative ingestion was identified and removed, 8 experienced improvement in kidney function. Conclusion There was a shift toward supplements rather than enteric hyperoxaluria as a leading cause of secondary oxalate nephropathy during the COVID-19 pandemic. Kidney outcomes are better than those observed for enteric hyperoxaluria, if the offending agent is identified and removed.
Collapse
|
12
|
Bao D, Wang Y, Yu X, Zhao M. Acute oxalate nephropathy: A potential cause of acute kidney injury in diabetes mellitus—A case series from a single center. Front Med (Lausanne) 2022; 9:929880. [PMID: 36133577 PMCID: PMC9484473 DOI: 10.3389/fmed.2022.929880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAcute oxalate nephropathy (AON) is an uncommon condition that causes acute kidney injury (AKI), characterized by the massive deposition of calcium oxalate crystals in the renal parenchyma. In previous studies, urinary oxalate excretion has been found to be increased in patients with diabetes mellitus (DM). Here, we report a case series of diabetic patients with AKI with biopsy-proven AON, aiming to alert physicians to the potential of AON as a trigger of AKI in diabetic patients in clinical practice.Materials and methodsCases with pathological diagnosis of AON who presented with AKI clinically and had DM between January 2016 and December 2020 were retrospectively enrolled. Their clinical and pathological manifestations, treatment, and prognosis were collected.ResultsSix male patients with biopsy-proven AON out of a total of 5,883 native kidney biopsies were identified, aged 58.3 ± 9.1 years at the time of kidney biopsy. Only one patient who had received Roux-en-Y gastric bypass surgery took oxalate-rich food before the onset of the disease. None of them had clinical features of enteric malabsorption. Three patients were currently on renin-angiotensin system inhibitor treatment for hypertension, and 5 of them received non-steroidal anti-inflammatory drugs. Three patients presented with oliguria and 4 patients needed dialysis at the beginning with none requiring dialysis at discharge. Four patients received a course of corticosteroid treatment empirically. Among them, two patients had estimated glomerular filtration rate (eGFR) recovered to over 60 ml/min/1.73 m2, while the other two patients remained with kidney dysfunction at the last follow-up. In two patients without corticosteroid treatment, one patient fully recovered with eGFR over 90 ml/min/1.73 m2 and the other patient remained with kidney dysfunction at the last follow-up.ConclusionAON might be a rare but potentially trigger of AKI in patients with DM. A kidney biopsy could help physicians to make the correct diagnosis. The proper treatment to alleviate oxalate-induced injury needs to be further studied.
Collapse
Affiliation(s)
- Daorina Bao
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, National Health and Family Planning Commission of the People’s Republic of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
| | - Yu Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, National Health and Family Planning Commission of the People’s Republic of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
- *Correspondence: Yu Wang,
| | - Xiaojuan Yu
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, National Health and Family Planning Commission of the People’s Republic of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
| | - Minghui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, National Health and Family Planning Commission of the People’s Republic of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
- Laboratory of Electron Microscopy, Pathological Centre, Peking University First Hospital, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
13
|
Demoulin N, Aydin S, Gillion V, Morelle J, Jadoul M. Pathophysiology and Management of Hyperoxaluria and Oxalate Nephropathy: A Review. Am J Kidney Dis 2022; 79:717-727. [PMID: 34508834 DOI: 10.1053/j.ajkd.2021.07.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/27/2021] [Indexed: 01/11/2023]
Abstract
Hyperoxaluria results from either inherited disorders of glyoxylate metabolism leading to hepatic oxalate overproduction (primary hyperoxaluria), or increased intestinal oxalate absorption (secondary hyperoxaluria). Hyperoxaluria may lead to urinary supersaturation of calcium oxalate and crystal formation, causing urolithiasis and deposition of calcium oxalate crystals in the kidney parenchyma, a condition termed oxalate nephropathy. Considerable progress has been made in the understanding of pathophysiological mechanisms leading to hyperoxaluria and oxalate nephropathy, whose diagnosis is frequently delayed and prognosis too often poor. Fortunately, novel promising targeted therapeutic approaches are on the horizon in patients with primary hyperoxaluria. Patients with secondary hyperoxaluria frequently have long-standing hyperoxaluria-enabling conditions, a fact suggesting the role of triggers of acute kidney injury such as dehydration. Current standard of care in these patients includes management of the underlying cause, high fluid intake, and use of calcium supplements. Overall, prompt recognition of hyperoxaluria and associated oxalate nephropathy is crucial because optimal management may improve outcomes.
Collapse
Affiliation(s)
- Nathalie Demoulin
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| | - Selda Aydin
- Department of Pathology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Valentine Gillion
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Johann Morelle
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Michel Jadoul
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
14
|
Rosenstock JL, Joab TMJ, DeVita MV, Yang Y, Sharma PD, Bijol V. Oxalate nephropathy: a review. Clin Kidney J 2022; 15:194-204. [PMID: 35145635 PMCID: PMC8825217 DOI: 10.1093/ckj/sfab145] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/21/2021] [Indexed: 01/13/2023] Open
Abstract
This review describes the clinical and pathological features of oxalate nephropathy (ON), defined as a syndrome of decreased renal function associated with deposition of calcium oxalate crystals in kidney tubules. We review the different causes of hyperoxaluria, including primary hyperoxaluria, enteric hyperoxaluria and ingestion-related hyperoxaluria. Recent case series of biopsy-proven ON are reviewed in detail, as well as the implications of these series. The possibility of antibiotic use predisposing to ON is discussed. Therapies for hyperoxaluria and ON are reviewed with an emphasis on newer treatments available and in development. Promising research avenues to explore in this area are discussed.
Collapse
Affiliation(s)
- Jordan L Rosenstock
- Division of Nephrology, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Tatyana M J Joab
- Division of Nephrology, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Maria V DeVita
- Division of Nephrology, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Yihe Yang
- Department of Pathology, North Shore University Hospital and Long Island Jewish Medical Center, Donald and Barbara Zucker School of Medicine at Hostra/Northwell, New York, USA
| | - Purva D Sharma
- Division of Kidney Diseases and Hypertension, North Shore University Hospital and Long Island Jewish Medical Center, Donald and Barbara Zucker School of Medicine at Hostra/Northwell, New York, NY, USA
| | - Vanesa Bijol
- Department of Pathology, North Shore University Hospital and Long Island Jewish Medical Center, Donald and Barbara Zucker School of Medicine at Hostra/Northwell, New York, USA
| |
Collapse
|
15
|
Pfau A, Ermer T, Coca SG, Tio MC, Genser B, Reichel M, Finkelstein FO, März W, Wanner C, Waikar SS, Eckardt KU, Aronson PS, Drechsler C, Knauf F. High Oxalate Concentrations Correlate with Increased Risk for Sudden Cardiac Death in Dialysis Patients. J Am Soc Nephrol 2021; 32:2375-2385. [PMID: 34281958 PMCID: PMC8729829 DOI: 10.1681/asn.2020121793] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/10/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The clinical significance of accumulating toxic terminal metabolites such as oxalate in patients with kidney failure is not well understood. METHODS To evaluate serum oxalate concentrations and risk of all-cause mortality and cardiovascular events in a cohort of patients with kidney failure requiring chronic dialysis, we performed a post-hoc analysis of the randomized German Diabetes Dialysis (4D) Study; this study included 1255 European patients on hemodialysis with diabetes followed-up for a median of 4 years. The results obtained via Cox proportional hazards models were confirmed by competing risk regression and restricted cubic spline modeling in the 4D Study cohort and validated in a separate cohort of 104 US patients on dialysis after a median follow-up of 2.5 years. RESULTS A total of 1108 patients had baseline oxalate measurements, with a median oxalate concentration of 42.4 µM. During follow-up, 548 patients died, including 139 (25.4%) from sudden cardiac death. A total of 413 patients reached the primary composite cardiovascular end point (cardiac death, nonfatal myocardial infarction, and fatal or nonfatal stroke). Patients in the highest oxalate quartile (≥59.7 µM) had a 40% increased risk for cardiovascular events (adjusted hazard ratio [aHR], 1.40; 95% confidence interval [95% CI], 1.08 to 1.81) and a 62% increased risk of sudden cardiac death (aHR, 1.62; 95% CI, 1.03 to 2.56), compared with those in the lowest quartile (≤29.6 µM). The associations remained when accounting for competing risks and with oxalate as a continuous variable. CONCLUSIONS Elevated serum oxalate is a novel risk factor for cardiovascular events and sudden cardiac death in patients on dialysis. Further studies are warranted to test whether oxalate-lowering strategies improve cardiovascular mortality in patients on dialysis.
Collapse
Affiliation(s)
- Anja Pfau
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Theresa Ermer
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany,Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut,London School of Hygiene & Tropical Medicine, University of London, London, United Kingdom
| | - Steven G. Coca
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Maria Clarissa Tio
- Division of Renal Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Bernd Genser
- BGStats Consulting, Vienna, Austria,Mannheim Institute of Public Health, Social and Preventive Medicine, University of Heidelberg, Heidelberg, Germany
| | - Martin Reichel
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Fredric O. Finkelstein
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut
| | - Winfried März
- Medical Clinic V (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), University of Heidelberg, Mannheim, Germany,Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria,Synlab Academy, Mannheim, Germany
| | - Christoph Wanner
- Division of Nephrology, Department of Internal Medicine 1 and Comprehensive Heart Failure Centre, University Hospital of Würzburg, Würzburg, Germany
| | - Sushrut S. Waikar
- Section of Nephrology, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Peter S. Aronson
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut
| | - Christiane Drechsler
- Division of Nephrology, Department of Internal Medicine 1 and Comprehensive Heart Failure Centre, University Hospital of Würzburg, Würzburg, Germany,KfH Kidney Center for Dialysis and Kidney Transplantation, Würzburg, Germany
| | - Felix Knauf
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany,Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
16
|
A Sodium Oxalate-Rich Diet Induces Chronic Kidney Disease and Cardiac Dysfunction in Rats. Int J Mol Sci 2021; 22:ijms22179244. [PMID: 34502149 PMCID: PMC8431202 DOI: 10.3390/ijms22179244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/30/2022] Open
Abstract
Chronic kidney disease (CKD) is a worldwide public health issue affecting 14% of the general population. However, research focusing on CKD mechanisms/treatment is limited because of a lack of animal models recapitulating the disease physiopathology, including its complications. We analyzed the effects of a three-week diet rich in sodium oxalate (OXA diet) on rats and showed that, compared to controls, rats developed a stable CKD with a 60% reduction in glomerular filtration rate, elevated blood urea levels and proteinuria. Histological analyses revealed massive cortical disorganization, tubular atrophy and fibrosis. Males and females were sensitive to the OXA diet, but decreasing the diet period to one week led to GFR significance but not stable diminution. Rats treated with the OXA diet also displayed classical CKD complications such as elevated blood pressure and reduced hematocrit. Functional cardiac analyses revealed that the OXA diet triggered significant cardiac dysfunction. Altogether, our results showed the feasibility of using a convenient and non-invasive strategy to induce CKD and its classical systemic complications in rats. This model, which avoids kidney mass loss or acute toxicity, has strong potential for research into CKD mechanisms and novel therapies, which could protect and postpone the use of dialysis or transplantation.
Collapse
|
17
|
Bui TPN, de Vos WM. Next-generation therapeutic bacteria for treatment of obesity, diabetes, and other endocrine diseases. Best Pract Res Clin Endocrinol Metab 2021; 35:101504. [PMID: 33785319 DOI: 10.1016/j.beem.2021.101504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human gut microbiota has appeared as an important factor affecting host health and intestinal bacteria have recently emerged as potential therapeutics to treat diabetes and other endocrine diseases. These mainly anaerobic bacteria have been identified either via comparative "omics" analysis of the intestinal microbiota in healthy and diseased subjects or of data collected by fecal microbiota transplantation studies. Both approaches require advanced and in-depth sequencing technologies to perform massive genomic screening to select bacteria with potential benefits. It has been shown that these potentially therapeutic bacteria can either produce bioactive products that directly influence the host patho-physiology and endocrine systems or produce specific signaling molecules that may do so. These bioactive compounds can be formed via degradation of dietary or host-derived components or the conversion of intermediate compounds produced by fermentation of intestinal bacteria. Several of these bacteria have shown causality in preclinical models and entered clinical phase studies, while their mode of action is being analyzed. In this review, we summarize the research on the most promising bacterial candidates with therapeutic properties with a specific focus on diabetes.
Collapse
Affiliation(s)
- Thi Phuong Nam Bui
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708, WE, Wageningen, the Netherlands; Caelus Pharmaceuticals BV, 3474, KG, Zegveld, the Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708, WE, Wageningen, the Netherlands; Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
18
|
Zhou J, Yu X, Su T, Wang S, Yang L. Critically ill, tubular injury, delayed early recovery: characteristics of acute kidney disease with renal oxalosis. Ren Fail 2021; 43:425-432. [PMID: 33663319 PMCID: PMC7939555 DOI: 10.1080/0886022x.2021.1885443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objects This study aimed to analyze the clinicopathological features of acute kidney disease (AKD) with renal oxalosis. Methods Data for biopsy-proven AKD with oxalosis diagnosed from Jan 2011 to Oct 2018 was collected. The underlying diseases, dietary habits, clinical and pathological characteristics of newly emerging kidney disease were analyzed. The long-term renal prognosis was observed. Results A total of 23 patients were included, comprised of 18 men and 5 women with a mean age of 51.6 ± 15.9 years. The peak Scr was 669.9 ± 299.8 μmol/L, and 95.7% of patients had stage 3 acute kidney injury (AKI). Drug-induced tubulointerstitial nephritis (TIN) was the most common cause (65.2%) of AKD, followed by severe nephrotic syndrome (17.4%). All patients had pathological changes indicating TIN, and 11 patients were complicated with the newly emerging glomerular disease (GD). The risk of oxalosis caused by increased enterogenous oxalate absorption accounted for only 26.1%, and others came from new kidney diseases. The majority (75%) of abundant (medium to severe) oxalosis occurred in patients without GD. There were no significant differences in the score for tubular injury (T-IS) and interstitial inflammation with different severities of oxalosis. Rate of Scr decrease (ΔScr%) at 2 weeks was negatively correlated with the severity of oxalosis (R = −0.542, p = 0.037), score for T-IS (R = −0.553, p = 0.033), and age (R = −0.736, p = 0.002). The decrease in Scr at 4 weeks was correlated with T-IS (R = −0.433), but had no correlation with oxalosis. Conclusions The present findings revealed that 95.7% of AKD with secondary renal oxalosis occurred in critically ill patients. AKD from tubular injury was the prominent cause. Severe oxalosis contributed to delayed early recovery of AKD.
Collapse
Affiliation(s)
- Jing Zhou
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.,Renal Pathology Center, Institute of Nephrology, Beijing, China.,Renal Division, Department of Medicine, Kailuan General Hospital, Tangshan, China
| | - Xiaojuan Yu
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.,Renal Pathology Center, Institute of Nephrology, Beijing, China
| | - Tao Su
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.,Renal Pathology Center, Institute of Nephrology, Beijing, China
| | - Suxia Wang
- Renal Pathology Center, Institute of Nephrology, Beijing, China.,Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, China
| | - Li Yang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.,Renal Pathology Center, Institute of Nephrology, Beijing, China
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW The gut-kidney axis plays a critical role in oxalate homeostasis, and better understanding of oxalate transport regulatory mechanisms is essential for developing novel therapies. RECENT FINDINGS Oxalate potentially contributes to chronic kidney disease (CKD) progression, CKD - and end stage renal disease (ESRD)-associated cardiovascular diseases, polycystic kidney disease (PKD) progression, and/or poor renal allograft survival, emphasizing the need for plasma and urinary oxalate lowering therapies. One promising strategy would be to enhance the bowel's ability to secrete oxalate, which might be facilitated by the following findings. Oxalobacter formigenes (O. formigenes)-derived factors recapitulate O. formigenes colonization effects by reducing urinary oxalate excretion in hyperoxaluric mice by inducing colonic oxalate secretion. Protein kinase A activation stimulates intestinal oxalate transport by enhancing the surface expression of the oxalate transporter SLC26A6 (A6). Glycosylation also stimulates A6-mediated oxalate transport. The colon adapts to chronic acidosis in rats through increased colonic oxalate secretion as previously reported in CKD rats, and A6-mediated enteric oxalate secretion is critical in reducing the body oxalate burden in CKD mice. Intestinal oxalate transport is negatively regulated by proinflammatory cytokines and cholinergic, purinergic, and adenosinergic signaling. SUMMARY These findings could facilitate the development of novel therapeutics for hyperoxalemia, hyperoxaluria, and related disorders if similar regulatory mechanisms are confirmed in humans.
Collapse
Affiliation(s)
- Altayeb E Alshaikh
- University of Chicago Pritzker School of Medicine
- University of Chicago, Chicago, Illinois, USA
| | - Hatim A Hassan
- University of Chicago Pritzker School of Medicine
- University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
20
|
Singh P, Viehman JK, Mehta RA, Cogal AG, Hasadsri L, Oglesbee D, Olson JB, Seide BM, Sas DJ, Harris PC, Lieske JC, Milliner DS. Clinical characterization of primary hyperoxaluria type 3 in comparison to types 1 and 2: a retrospective cohort study. Nephrol Dial Transplant 2021; 37:869-875. [PMID: 33543760 DOI: 10.1093/ndt/gfab027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Primary hyperoxaluria type 3 (PH3) is caused by mutations in the HOGA1 gene. PH3 patients often present with recurrent urinary stone disease (USD) in first decade of life, but prior reports suggested PH3 may have a milder phenotype in adults. The current study characterized clinical manifestations of PH3 across the decades of life in comparison to PH1 and PH2. METHODS Clinical information was obtained from the Rare Kidney Stone Consortium Primary Hyperoxaluria Registry (PH1 n = 384; PH2 n = 51; PH3 n = 62). RESULTS PH3 patients presented with symptoms at a median 2.7 yrs old compared to PH1 (4.9 yrs) and PH2 (5.7 yrs) (p = 0.14). Nephrocalcinosis was present at diagnosis in 4 (7%) PH3 patients while 55 (89%) had stones. Median urine oxalate excretion was lowest in PH3 patients compared to PH1 and PH2 (1.1 vs 1.6 and 1.5 mmol/day/1.73m2, respectively, p < 0.001) while urine calcium was highest in PH3 (112 vs 51 and 98 mg/day/1.73m2 in PH1 and PH2, respectively, p < 0.001). Stone events per decade of life were similar across the age span and the 3 PH types. At 40 years of age, 97% of PH3 patients had not progressed to ESKD compared to 36% PH1 and 66% PH2 patients. CONCLUSIONS Patients with all forms of PH experience lifelong stone events often beginning in childhood. Kidney failure is common in PH1 but rare in PH3. Longer term follow up of larger cohorts will be important for a more complete understanding of the PH3 phenotype.
Collapse
Affiliation(s)
- Prince Singh
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Jason K Viehman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Ramila A Mehta
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea G Cogal
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Linda Hasadsri
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Julie B Olson
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Barbara M Seide
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - David J Sas
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA.,Division of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - John C Lieske
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Dawn S Milliner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA.,Division of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
21
|
de Araújo L, Costa-Pessoa JM, de Ponte MC, Oliveira-Souza M. Sodium Oxalate-Induced Acute Kidney Injury Associated With Glomerular and Tubulointerstitial Damage in Rats. Front Physiol 2020; 11:1076. [PMID: 32982795 PMCID: PMC7479828 DOI: 10.3389/fphys.2020.01076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Acute crystalline nephropathy is closely related to tubulointerstitial injury, but few studies have investigated glomerular changes in this condition. Thus, in the current study, we investigated the factors involved in glomerular and tubulointerstitial injury in an experimental model of crystalline-induced acute kidney injury (AKI). We treated male Wistar rats with a single injection of sodium oxalate (NaOx, 7 mg⋅100 g-1⋅day-1, resuspended in 0.9% NaCl solution, i.p.) or vehicle (control). After 24 h of treatment, food and water intake, urine output, body weight gain, and renal function were evaluated. Renal tissue was used for the morphological studies, quantitative PCR and protein expression studies. Our results revealed that NaOx treatment did not change metabolic or electrolyte and water intake parameters or urine output. However, the treated group exhibited tubular calcium oxalate (CaOx) crystals excretion, followed by a decline in kidney function demonstrated along with glomerular injury, which was confirmed by increased plasma creatinine and urea concentrations, increased glomerular desmin immunostaining, nephrin mRNA expression and decreased WT1 immunofluorescence. Furthermore, NaOx treatment resulted in tubulointerstitial injury, which was confirmed by tubular dilation, albuminuria, increased Kim-1 and Ki67 mRNA expression, decreased megalin and Tamm-Horsfall protein (THP) expression. Finally, the treatment induced increases in CD68 protein staining, MCP-1, IL-1β, NFkappaB, and α-SMA mRNA expression, which are consistent with proinflammatory and profibrotic signaling, respectively. In conclusion, our findings provide relevant information regarding crystalline-induced AKI, showing strong tubulointerstitial and glomerular injury with a possible loss of podocyte viability.
Collapse
Affiliation(s)
- Larissa de Araújo
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Juliana Martins Costa-Pessoa
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mariana Charleaux de Ponte
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Oliveira-Souza
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|