1
|
Capdevila JH, Falck JR, Adebesin AM. Epoxyeicosatrienoic acids (EETs): A novel class of second messengers of hormonal functional responses. Prostaglandins Other Lipid Mediat 2025; 177:106967. [PMID: 39889333 DOI: 10.1016/j.prostaglandins.2025.106967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
Epoxyeicosatrienoic acids (EETs) are a class of cytochrome P450 (P450) arachidonic acid (AA) metabolites with diverse biological activities including anti-hypertensive, vasodilatory, angiogenic, and anti-inflammatory properties. While their functions as autocrine and paracrine mediators in cardiovascular and renal systems are well established, their mechanism of action and roles in hormonal functional responses are yet to be fully defined. In this review, we highlight extant evidence of their participation in hormonal transmembrane signal transduction leading to the activation of the ERK1/2 or Akt serine/threonine kinases. Based on studies with EGF (Epidermal Growth Factor), VEGF (Vascular Endothelial Growth Factor) and insulin binding to their membrane bound receptors, we propose to include EETs to the inventory of intracellular mediators associated with the functional responses elicited upon selected hormone/receptor interactions.
Collapse
Affiliation(s)
- Jorge H Capdevila
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - John R Falck
- Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adeniyi Michael Adebesin
- Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
2
|
Alammari AH, Isse FA, O'Croinin C, Davies NM, El-Kadi AOS. Modulation of Angiotensin II-Induced Cellular Hypertrophy by Cannflavin-C: Unveiling the Impact on Cytochrome P450 1B1 and Arachidonic Acid Metabolites. Drug Metab Dispos 2024; 52:875-885. [PMID: 38839111 DOI: 10.1124/dmd.124.001705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
This research aimed to clarify the impacts of cannflavin-C on angiotensin II (Ang II)-induced cardiac hypertrophy and their potential role in modulating cytochrome P450 1B1 (CYP1B1) and arachidonic acid (AA) metabolites. Currently there is no evidence to suggest that cannflavin-C, a prenylated flavonoid, has any significant effects on the heart or cardiac hypertrophy. The metabolism of arachidonic acid (AA) into midchain hydroxyeicosatetraenoic acids (HETEs), facilitated by CYP1B1 enzyme, plays a role in the development of cardiac hypertrophy, which is marked by enlarged cardiac cells. Adult human ventricular cardiomyocyte (AC16) cell line was cultured and exposed to cannflavin-C in the presence and absence of Ang II. The assessment of mRNA expression pertaining to cardiac hypertrophic markers and cytochromes P450 (P450s) was conducted via real-time polymerase chain reaction (PCR), whereas the quantification of P450 protein levels was carried out through western blot analysis. Ang II induced hypertrophic markers myosin heavy chain (β/α-MHC), atrial natriuretic peptide (ANP), and brain natriuretic peptide (BNP) and increased cell surface area, whereas cannflavin-C mitigated these effects. Gene and protein expression analysis revealed that cannflavin-C downregulated CYP1B1 gene expression, protein level, and enzyme activity assessed by 7-methoxyresorufin O-deethylase (MROD). Arachidonic acid metabolites analysis, using liquid chromatography-tandem mass spectrometry (LC-MS/MS), demonstrated that Ang II increased midchain (R/S)-HETE concentrations, which were attenuated by cannflavin-C. This study provides novel insights into the potential of cannflavin-C in modulating arachidonic acid metabolites and attenuating Ang II-induced cardiac hypertrophy, highlighting the importance of this compound as potential therapeutic agents for cardiac hypertrophy. SIGNIFICANCE STATEMENT: This study demonstrates that cannflavin-C offers protection against cellular hypertrophy induced by angiotensin II. The significance of this research lies in its novel discovery, which elucidates a mechanistic pathway involving the inhibition of CYP1B1 by cannflavin-C. This discovery opens up new avenues for leveraging this compound in the treatment of heart failure.
Collapse
Affiliation(s)
- Ahmad H Alammari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Fadumo Ahmed Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Conor O'Croinin
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Neal M Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Li H, Wang L, Zhang H, Yu W, Li Y, Jiang H, Wang D, Wang Y. Study on material basis and anti-hypertensive metabolomics of Zhengan-Xifeng-Tang(ZXT): A comparison between ZXT decoction and granules. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1236:124063. [PMID: 38447242 DOI: 10.1016/j.jchromb.2024.124063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
High blood pressure is a serious human health problem and one of the leading risk factors for fatal complications in cardiovascular disease. The ZXT granules were prepared based on the Zhengan-Xifeng-Tang (ZXT) decoction. However, the therapeutic effects of ZXT granules on spontaneous hypertension and the metabolic pathways in which they may intervene are unclear. The aim of this study was to investigate the antihypertensive effect of ZXT granules on spontaneously hypertensive rats (SHR) and to analyze the metabolic pathway of intervention through chemical composition characterization, pharmacodynamics, and serum metabolomics analysis. After eight weeks of administration, serum and aortic arch samples were collected for biochemical, histopathology and serum metabolomics analysis to assess the effect of ZXT granules on SHR. The results showed that ZXT granules reduced aortic arch injury and blood pressure in SHR rats. Serum data from rats in each group was collected using LC-MS and 74 potential biomarkers were identified that showed significant differences between the model and control groups. Of these, 18 potential biomarkers were found to be deregulated after intervention with ZXT granules. These 18 potential differential metabolic markers are primarily involved in bile acid biosynthesis, arachidonic acid metabolism pathway, and fatty acid degradation. The results demonstrated that ZXT granules significantly affected blood lipids, aortic arch, and metabolic disorders in SHR rats. ZXT granules offer a new possibility for effective and convenient treatment of hypertensive patients.
Collapse
Affiliation(s)
- Haichao Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lihua Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hao Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wenchi Yu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yunlun Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Haiqing Jiang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Danyang Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yu Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China.
| |
Collapse
|
4
|
Alammari AH, Gerges SH, Isse FA, El-Kadi AOS. 6-Formylindolo[3,2-b]carbazole Protects Against Angiotensin II-Induced Cellular Hypertrophy through the Induction of Cytochrome P450 1A1 and Its Associated 19(S)-HETE Metabolite In Vitro. Drug Metab Dispos 2023; 51:833-843. [PMID: 37185150 DOI: 10.1124/dmd.123.001267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Aryl hydrocarbon receptor (AhR) is a multifunctional receptor that regulates cytochrome P450 1A1 (CYP1A1), an arachidonic acid (AA) metabolizing enzyme producing 19-hydroxyeicosatetraenoic acid (HETE). 6-formylindolo[3,2-b]carbazole (FICZ) demonstrates great affinity toward the AhR. Recently, we have shown that 19(S)-HETE is preferentially cardioprotective. This study investigates the role of FICZ on AhR and cytochrome P450 (CYP) 1A1-mediated AA metabolism and whether it attenuates angiotensin (Ang) II-induced cardiac hypertrophy. Adult human ventricular cardiomyocytes cell line treated with FICZ in the presence and absence of Ang II 10 μM. Protein levels of AhR and CYPs were determined by Western blot analysis and the mRNA expression of cardiac hypertrophic markers and CYPs were determined by real-time polymerase chain reaction. CYP1A1 enzyme activity and proteasomal degradation were determined by 7-ethoxyresorufin O-deethylase and proteasome 20S activity assays, respectively. Liquid chromatography tandem mass spectrometry was used to measure AA metabolites. Our results show that Ang II-induced cardiac hypertrophy modulates AA metabolites in an enantioselective manner, and that FICZ activates AhR in a time-dependent manner, inhibits AhR proteasomal degradation, induces CYP1A1, increases the concentration of 19(S)-HETE, and attenuates Ang II-induced cardiac hypertrophy by inhibiting the hypertrophic markers and decreasing cell surface area through midchain-HETE-dependent mechanism. In conclusion, the results demonstrate the ability of FICZ to protect against Ang II-induced cardiac hypertrophy by increasing the concentration of 19(S)-HETE through AhR regulated enzyme induction and inhibition of midchain-HETEs metabolites. SIGNIFICANCE STATEMENT: This study shows that 6-formylindolo[3,2-b]carbazole attenuate angiotensin II-induced cellular hypertrophy. The novel findings of our investigation are in characterizing the aryl hydrocarbon receptor involvement and the enantioselective differences in arachidonic acid metabolism in cardiac hypertrophy, which opens a new pathway to tackle and eventually treat heart failure.
Collapse
Affiliation(s)
- Ahmad H Alammari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Fadumo Ahmed Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Li H, Wang L, Zhang L, Liu J, Zhang H, Wang D, Yang W. Study on material basis and anti-hypertensive metabolomics of different extraction methods of the Uncaria rhynchophylla Scrophularia Formula. J Pharm Biomed Anal 2023; 233:115464. [PMID: 37209496 DOI: 10.1016/j.jpba.2023.115464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
Hypertension is one of the most challenging public health problems worldwide. Previous studies suggested that the Uncaria rhynchophylla Scrophularia Formula (URSF), a medical institution preparation of the affiliated Hospital of Shandong University of Traditional Chinese Medicine, is effective for essential hypertension. However, the efficacy of URSF for hypertension remains unclear. We aimed to clarify the anti-hypertensive mechanism of the URSF. The material basis of URSF was identified by the LC-MS. We also evaluated the antihypertensive efficacy of URSF on SHR rats by body weight, blood pressure and biochemical indicators. The LC-MS spectrometry-based serum non-targeted metabolomics was used to seek potential biomarkers and relevant pathways for URSF in the treatment of SHR rats. 56 biomarkers were metabolically disturbed in SHR rats in the model group compared with the control group. After URSF intervention, 13 biomarkers showed a recovery in the optimal method compared with the other three groups. We identified 3 metabolic pathways in which URSF is involved: the arachidonic acid metabolism pathway, the niacin and nicotinamide metabolism pathway, and the purine metabolism pathway. These discoveries offer a basis for the study of URSF for the treatment of hypertension.
Collapse
Affiliation(s)
- Haichao Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lihua Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ling Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jinlei Liu
- Shandong Gujinzhong Medicine Technology Co., Ltd, Jinan 250104, China
| | - Hao Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Danyang Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Wenqing Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
6
|
Turnbull RE, Sander KN, Turnbull J, Barrett DA, Goodall AH. Profiling oxylipins released from human platelets activated through the GPVI collagen receptor. Prostaglandins Other Lipid Mediat 2021; 158:106607. [PMID: 34942378 DOI: 10.1016/j.prostaglandins.2021.106607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
In addition to haemostasis, platelets are involved in pathological processes, often driven by material released upon activation. Interaction between collagen and glycoprotein VI (GPVI) is a primary platelet stimulus that liberates arachidonic acid and linoleic acid from membrane phospholipids. These are oxidised by cyclooxygenase-1 (COX-1) and 12-lipoxygenase (12-LOX) to eicosanoids and other oxylipins with various biological properties. Using liquid chromatography-tandem mass spectrometry we found that GPVI-stimulated platelets released significant levels of ten oxylipins; the well documented TxA2 and 12-HETE, PGD2 and PGE2, as well as 8-, 9-, 11-, and 15-HETE, 9- and 13-HODE.1 Levels of oxylipins released from washed platelets mirrored those from platelets stimulated in the presence of plasma, indicating generation from intracellular, rather than exogenous AA/LA. Inhibition of COX-1 with aspirin, as expected, completely abolished production of TxA2 and PGD/E2, but also significantly inhibited the release of 11-HETE (89 ± 3%) and 9-HODE (74 ± 6%), and reduced 15-HETE and 13-HODE by ∼33 %. Inhibition of 12-LOX by either esculetin or ML355 inhibited the release of all oxylipins apart from 15-HETE. These findings suggest routes to modify the production of bioactive molecules released by activated platelets.
Collapse
Affiliation(s)
- Robert E Turnbull
- Department of Cardiovascular Sciences, University of Leicester and NIHR Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Katrin N Sander
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - James Turnbull
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - David A Barrett
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Alison H Goodall
- Department of Cardiovascular Sciences, University of Leicester and NIHR Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK.
| |
Collapse
|
7
|
Exercise-Induced Changes in Bioactive Lipids Might Serve as Potential Predictors of Post-Exercise Hypotension. A Pilot Study in Healthy Volunteers. Cells 2020; 9:cells9092111. [PMID: 32948055 PMCID: PMC7563406 DOI: 10.3390/cells9092111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 01/22/2023] Open
Abstract
Post-exercise hypotension (PEH) is the phenomenon of lowered blood pressure after a single bout of exercise. Only a fraction of people develops PEH but its occurrence correlates well with long-term effects of sports on blood pressure. Therefore, PEH has been suggested as a suitable predictor for the effectivity of exercise as therapy in hypertension. Local vascular bioactive lipids might play a potential role in this context. We performed a cross-over clinical pilot study with 18 healthy volunteers to investigate the occurrence of PEH after a single short-term endurance exercise. Furthermore, we investigated the plasma lipid profile with focus on arachidonic acid (AA)-derived metabolites as potential biomarkers of PEH. A single bout of ergometer cycling induced a significant PEH in healthy volunteers with the expected high inter-individual variability. Targeted lipid spectrum analysis revealed significant upregulation of several lipids in the direct post-exercise phase. Among these changes, only 15- hydroxyeicosatetranoic acid (HETE) correlated significantly with the extent of PEH but in an AA-independent manner, suggesting that 15-HETE might act as specific PEH-marker. Our data indicate that specific lipid modulation might facilitate the identification of patients who will benefit from exercise activity in hypertension therapy. However, larger trials including hypertonic patients are necessary to verify the clinical value of this hypothesis.
Collapse
|
8
|
Capdevila JH, Falck JR. The arachidonic acid monooxygenase: from biochemical curiosity to physiological/pathophysiological significance. J Lipid Res 2018; 59:2047-2062. [PMID: 30154230 PMCID: PMC6210905 DOI: 10.1194/jlr.r087882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/10/2018] [Indexed: 12/19/2022] Open
Abstract
The initial studies of the metabolism of arachidonic acid (AA) by the cytochrome P450 (P450) hemeproteins sought to: a) elucidate the roles for these enzymes in the metabolism of endogenous pools of the FA, b) identify the P450 isoforms involved in AA epoxidation and ω/ω-1 hydroxylation, and c) explore the biological activities of their metabolites. These early investigations provided a foundation for subsequent efforts to establish the physiological relevance of the AA monooxygenase and its contributions to the pathophysiology of, for example, cancer, diabetes, hypertension, inflammation, nociception, and vascular disease. This retrospective analyzes the history of some of these efforts, with emphasis on genetic studies that identified roles for the murine Cyp4a and Cyp2c genes in renal and vascular physiology and the pathophysiology of hypertension and cancer. Wide-ranging investigations by laboratories worldwide, including the authors, have established a better appreciation of the enzymology, genetics, and physiologic roles for what is now known as the third branch of the AA cascade. Combined with the development of analytical and pharmacological tools, including robust synthetic agonists and antagonists of the major metabolites, we stand at the threshold of novel therapeutic approaches for the treatment of renal injury, pain, hypertension, and heart disease.
Collapse
Affiliation(s)
- Jorge H Capdevila
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - John R Falck
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
9
|
El-Sherbeni AA, El-Kadi AOS. Microsomal cytochrome P450 as a target for drug discovery and repurposing. Drug Metab Rev 2016; 49:1-17. [DOI: 10.1080/03602532.2016.1257021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ahmed A. El-Sherbeni
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O. S. El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
El-Sherbeni AA, El-Kadi AOS. Repurposing Resveratrol and Fluconazole To Modulate Human Cytochrome P450-Mediated Arachidonic Acid Metabolism. Mol Pharm 2016; 13:1278-88. [PMID: 26918316 DOI: 10.1021/acs.molpharmaceut.5b00873] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cytochrome P450 (P450) enzymes metabolize arachidonic acid (AA) to several biologically active epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic acids (HETEs). Repurposing clinically-approved drugs could provide safe and readily available means to control EETs and HETEs levels in humans. Our aim was to determine how to significantly and selectively modulate P450-AA metabolism in humans by clinically-approved drugs. Liquid chromatography-mass spectrometry was used to determine the formation of 15 AA metabolites by human recombinant P450 enzymes, as well as human liver and kidney microsomes. CYP2C19 showed the highest EET-forming activity, while CYP1B1 and CYP2C8 showed the highest midchain HETE-forming activities. CYP1A1 and CYP4 showed the highest subterminal- and 20-HETE-forming activity, respectively. Resveratrol and fluconazole produced the most selective and significant modulation of hepatic P450-AA metabolism, comparable to investigational agents. Monte Carlo simulations showed that 90% of human population would experience a decrease by 6-22%, 16-39%, and 16-35% in 16-, 18-, and 20-HETE formation, respectively, after 2.5 g daily of resveratrol, and by 22-31% and 14-23% in 8,9- and 14,15-EET formation after 50 mg of fluconazole. In conclusion, clinically-approved drugs can provide selective and effective means to modulate P450-AA metabolism, comparable to investigational drugs. Resveratrol and fluconazole are good candidates to be repurposed as new P450-based treatments.
Collapse
Affiliation(s)
- Ahmed A El-Sherbeni
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta, Canada T6G 2E1
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta, Canada T6G 2E1
| |
Collapse
|
11
|
Capdevila JH, Wang W, Falck JR. Arachidonic acid monooxygenase: Genetic and biochemical approaches to physiological/pathophysiological relevance. Prostaglandins Other Lipid Mediat 2015; 120:40-9. [PMID: 25986599 DOI: 10.1016/j.prostaglandins.2015.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/19/2015] [Accepted: 05/06/2015] [Indexed: 12/22/2022]
Abstract
Studies with rat genetic models of hypertension pointed to roles for the CYP2C and CYP4A arachidonic acid epoxygenases and ω-hydroxylases in tubular transport, hemodynamics, and blood pressure control. Further progress in defining their physiological functions and significance to human hypertension requires conclusive identifications of the relevant genes and proteins. Here we discuss unequivocal evidence of roles for the murine Cyp4a14, Cyp4a10, and Cyp2c44 genes in the pathophysiology of hypertension by showing that: (a) Cyp4a14(-/-) mice develop sexually dimorphic hypertension associated with renal vasoconstriction, and up-regulated expression of Cyp4a12a and pro-hypertensive 20-hydroxyeicosatetraenoic acid (20-HETE) levels, and b) Cyp4a10(-/-) and Cyp2c44(-/-) mice develop salt sensitive hypertension linked to downregulation or lack of the Cyp2c44 epoxygenase, reductions in anti-hypertensive epoxyeicosatrienoic acids (EETs), and increases in distal sodium reabsorption. Based on these studies, the human CYP4A11 and CYPs 2C8 and 2C9 genes and their products are identified as potential candidates for studies of the molecular basis of human hypertension.
Collapse
Affiliation(s)
- Jorge H Capdevila
- Department of Medicine, Vanderbilt University Medical School, Nashville, TN 37232, USA.
| | - Wenhui Wang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - John R Falck
- Department of Biochemistry, UT Southwestern Medical Center , Dallas, TX 75390, USA.
| |
Collapse
|
12
|
El-Sherbeni AA, El-Kadi AOS. Characterization of arachidonic acid metabolism by rat cytochrome P450 enzymes: the involvement of CYP1As. Drug Metab Dispos 2014; 42:1498-507. [PMID: 24969701 DOI: 10.1124/dmd.114.057836] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cytochrome P450 (P450) enzymes mediate arachidonic acid (AA) oxidation to several biologically active metabolites. Our aims in this study were to characterize AA metabolism by different recombinant rat P450 enzymes and to identify new targets for modulating P450-AA metabolism in vivo. A liquid chromatography-mass spectrometry method was developed and validated for the simultaneous measurements of AA and 15 of its P450 metabolites. CYP1A1, CYP1A2, CYP2B1, CYP2C6, and CYP2C11 were found to metabolize AA with high catalytic activity, and CYP2A1, CYP2C13, CYP2D1, CYP2E1, and CYP3A1 had lower activity. CYP1A1 and CYP1A2 produced ω-1→4 hydroxyeicosatetraenoic acids (HETEs) as 88.7 and 62.7%, respectively, of the total metabolites formed. CYP2C11 produced epoxyeicosatrienoic acids (EETs) as 61.3%, and CYP2C6 produced midchain HETEs and EETs as 48.3 and 29.4%, respectively, of the total metabolites formed. The formation of CYP1A1, CYP1A2, CYP2C6, and CYP2C11 major metabolites followed an atypical kinetic profile of substrate inhibition. CYP1As inhibition by α-naphthoflavone or anti-CYP1As antibodies significantly reduced ω-1→4 HETE formation in the lungs and liver, whereas CYP1As induction by 3-methylcholanthrene resulted in a significant increase in ω-1→4 HETEs formation in the heart, lungs, kidney, and livers by 370, 646, 532, and 848%, respectively. In conclusion, our results suggest that CYP1As and CYP2Cs are major players in the metabolism of AA. The significant contribution of CYP1As to AA metabolism and their strong inducibility suggest their possible use as targets for the prevention and treatment of several diseases.
Collapse
Affiliation(s)
- Ahmed A El-Sherbeni
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Capdevila JH, Pidkovka N, Mei S, Gong Y, Falck JR, Imig JD, Harris RC, Wang W. The Cyp2c44 epoxygenase regulates epithelial sodium channel activity and the blood pressure responses to increased dietary salt. J Biol Chem 2013; 289:4377-86. [PMID: 24368771 DOI: 10.1074/jbc.m113.508416] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hypertension is a major risk factor for cerebral, cardiovascular, and renal disease, and its prevalence and devastating consequences raises a need for new strategies for its early diagnosis and treatment. We show here that lack of a Cyp2c44 epoxygenase causes dietary salt-sensitive hypertension, a common form of the human disease. Cyp2c44(-/-) mice on normal salt diets are normotensive but become hypertensive when fed high salt. Hypertensive Cyp2c44(-/-) mice show a hyperactive kidney epithelial sodium channel (ENaC) and reductions in ERK1/2 and ENaC subunit phosphorylation. The demonstration that amiloride, an ENaC inhibitor, lowers the blood pressure of hypertensive Cyp2c44(-/-) mice identifies a role for the channel in the hypertensive phenotype of the animals. These studies: (a) identify an antihypertensive role for the kidney Cyp2c44 epoxygenase and for its epoxyeicosatrienoic acid (EET) metabolites in the in vivo control of ENaC activity and the activation of mitogenic kinase pathways; (b) provide evidence for a Cyp2c44 epoxygenase, EET-mediated mechanism of ENaC regulation involving an ERK1/2-catalyzed threonine phosphorylation of the channel γ subunit: and (c) characterize a common scientific platform that could explain the seemingly unrelated biological activities attributed to the epoxygenase metabolites in cell proliferation, angiogenesis, channel activity, and blood pressure control. It is expected that these results will serve as a basis for the development of novel strategies for the early diagnosis and treatment of hypertension and of pathophysiologies associated with dysfunctional mitogenic signaling.
Collapse
Affiliation(s)
- Jorge H Capdevila
- From the Department of Medicine, Vanderbilt University, Nashville Tennessee 37232
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Association between the CYP4A11 T8590C variant and essential hypertension: new data from Han Chinese and a meta-analysis. PLoS One 2013; 8:e80072. [PMID: 24278241 PMCID: PMC3836999 DOI: 10.1371/journal.pone.0080072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 10/08/2013] [Indexed: 01/11/2023] Open
Abstract
Objective CYP4A11 oxidizes endogenous arachidonic acid to 20-hydroxyeicosatetraenoic acid, a renal vasoconstrictor and natriuretic in humans. Previous studies demonstrated an association between a functional variant (T8590C) of CYP4A11 and essential hypertension, though with conflicting results. To elucidate this relationship, a case-control study and meta-analysis were performed to assess the possible association of essential hypertension with CYP4A11 genetic variations. Methods Associations between the T8590C polymorphism and essential hypertension were examined in 328 unrelated cases and 297 age-matched controls in Han Chinese individuals. High-resolution melting was used to identify the CYP4A11 variant. To further investigate the association, we conducted a meta-analysis including eight studies published previously in July 2012. Results The frequency of the CYP4A11 T8590C polymorphism showed no significant difference between cases and controls (all P>0.05). However, the meta-analysis showed that the CYP4A11 T8590C polymorphism may increase the risk of essential hypertension in an additive model (OR: 1.15, 95% CI: 1.02–1.29, P = 0.02), a dominant model (OR: 1.06, 95% CI: 1.01–1.32, P = 0.03), a recessive model (OR: 1.52, 95% CI: 1.15–2.02, P = 0.003) and a homozygote contrast (OR: 1.38, 95% CI: 1.07–1.78, P = 0.01). Also, a significant relationship was observed among Caucasians in the additive model, the homozygote contrast, the recessive model and the dominant model (all P<0.05). However, no association was observed in an Asian population (all P>0.05). Conclusions This meta-analysis suggests there is a significant association between the CYP4A11 T8590C variant and essential hypertension, especially in Caucasians. The case-control study did not find a significant association among the Han Chinese population, but the controls were poorly matched and meaningful conclusions cannot therefore be made. Further large-scale studies are needed to clarify whether the CYP4A11 T8590C polymorphism is associated with hypertension risk in Asians or has a gender-specific effect.
Collapse
|
15
|
Zhang MZ, Wang Y, Yao B, Gewin L, Wei S, Capdevila JH, Harris RC. Role of epoxyeicosatrienoic acids (EETs) in mediation of dopamine's effects in the kidney. Am J Physiol Renal Physiol 2013; 305:F1680-6. [PMID: 24154693 DOI: 10.1152/ajprenal.00409.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We have recently demonstrated that intrarenal dopamine plays an important role in preventing the development of systemic hypertension. Similarly, renal cytochrome P-450 (CYP)-epoxygenase-derived arachidonic acid metabolites, epoxyeicosatrienoic acids (EETs), also are antihypertensive through inhibiting sodium reabsorption and vasodilation. The potential interaction between renal dopamine and epoxygenase systems was investigated. Catechol-O-methyl-transferase (COMT)(-/-) mice with increased intrarenal dopamine levels and proximal tubule deletion of aromatic amino acid decarboxylase (ptAADC(-/-)) mice with renal dopamine deficiency were treated with a low-salt diet or high-salt diet for 2 wk. Wild-type or Cyp2c44(-/-) mice were treated with gludopa, which selectively increased renal dopamine levels. In low salt-treated mice, urinary EET levels were related to renal dopamine levels, being highest in COMT(-/-) mice and lowest in ptAADC(-/-) mice. In high salt-treated mice, total EET and individual EET levels in both the kidney and urine were also highest in COMT(-/-) mice and lowest in ptAADC(-/-) mice. Selective increases in renal dopamine in response to gludopa administration led to marked increases in both total and all individual EET levels in the kidney without any changes in blood levels. qRT-PCR and immunoblotting indicated that gludopa increased renal Cyp2c44 mRNA and protein levels. Gludopa induced marked increases in urine volume and urinary sodium excretion in wild-type mice. In contrast, gludopa did not induce significant increases in urine volume or urinary sodium excretion in Cyp2c44(-/-) mice. These studies demonstrate that renal EET levels are maintained by intrarenal dopamine, and Cyp2c44-derived EETs play an important role in intrarenal dopamine-induced natriuresis and diuresis.
Collapse
Affiliation(s)
- Ming-Zhi Zhang
- Div. of Nephrology, C3121 MCN, Vanderbilt Univ. School of Medicine and Nashville Veterans Affairs Hospital, Nashville, TN 37232.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The cytochrome P450 superfamily consists of a large number of heme-containing monooxygenases. Many human P450s metabolize drugs used to treat human diseases. Others are necessary for synthesis of endogenous compounds essential for human physiology. In some instances, alterations in specific P450s affect the biological processes that they mediate and lead to a disease. In this minireview, we describe medically significant human P450s (from families 2, 4, 7, 11, 17, 19, 21, 24, 27, 46, and 51) and the diseases associated with these P450s.
Collapse
Affiliation(s)
- Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
17
|
Birnie M, Morrison R, Camara R, Strauss KI. Temporal changes of cytochrome P450 (Cyp) and eicosanoid-related gene expression in the rat brain after traumatic brain injury. BMC Genomics 2013; 14:303. [PMID: 23642095 PMCID: PMC3658912 DOI: 10.1186/1471-2164-14-303] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 04/16/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) induces arachidonic acid (ArA) release from cell membranes. ArA metabolites form a class of over 50 bioactive eicosanoids that can induce both adaptive and/or maladaptive brain responses. The dynamic metabolism of ArA to eicosanoids, and how they affect the injured brain, is poorly understood due to their diverse activities, trace levels, and short half-lives. The eicosanoids produced in the brain postinjury depend upon the enzymes present locally at any given time. Eicosanoids are synthesized by heme-containing enzymes, including cyclooxygenases, lipoxygenases, and arachidonate monoxygenases. The latter comprise a subset of the cytochrome P450 "Cyp" gene family that metabolize fatty acids, steroids, as well as endogenous and exogenous toxicants. However, for many of these genes neither baseline neuroanatomical nor injury-related temporal expression have been studied in the brain.In a rat model of parietal cortex TBI, Cyp and eicosanoid-related mRNA levels were determined at 6 h, 24 h, 3d, and 7d postinjury in parietal cortex and hippocampus, where dynamic changes in eicosanoids have been observed. Quantitative real-time polymerase chain reaction with low density arrays were used to assay 62 rat Cyps, 37 of which metabolize ArA or other unsaturated fatty acids; 16 eicosanoid-related enzymes that metabolize ArA or its metabolites; 8 eicosanoid receptors; 5 other inflammatory- and recovery-related genes, plus 2 mouse Cyps as negative controls and 3 highly expressed "housekeeping" genes. RESULTS Sixteen arachidonate monoxygenases, 17 eicosanoid-related genes, and 12 other Cyps were regulated in the brain postinjury (p < 0.05, Tukey HSD). Discrete tissue levels and distinct postinjury temporal patterns of gene expression were observed in hippocampus and parietal cortex. CONCLUSIONS The results suggest complex regulation of ArA and other lipid metabolism after TBI. Due to the temporal nature of brain injury-induced Cyp gene induction, manipulation of each gene (or its products) at a given time after TBI will be required to assess their contributions to secondary injury and/or recovery. Moreover, a better understanding of brain region localization and cell type-specific expression may be necessary to deduce the role of these eicosanoid-related genes in the healthy and injured brain.
Collapse
Affiliation(s)
- Matthew Birnie
- University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 515, 45267 Cincinnati, OH, USA
| | - Ryan Morrison
- University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 515, 45267 Cincinnati, OH, USA
| | - Ramatoulie Camara
- University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 515, 45267 Cincinnati, OH, USA
| | - Kenneth I Strauss
- University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 515, 45267 Cincinnati, OH, USA
- Present Address: Michigan State University College of Human Medicine, 333 Bostwick Ave NE, 49503 Grand Rapids, MI, USA
| |
Collapse
|
18
|
Graves JP, Edin ML, Bradbury JA, Gruzdev A, Cheng J, Lih FB, Masinde TA, Qu W, Clayton NP, Morrison JP, Tomer KB, Zeldin DC. Characterization of four new mouse cytochrome P450 enzymes of the CYP2J subfamily. Drug Metab Dispos 2013; 41:763-73. [PMID: 23315644 PMCID: PMC3608456 DOI: 10.1124/dmd.112.049429] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/11/2013] [Indexed: 01/08/2023] Open
Abstract
The cytochrome P450 superfamily encompasses a diverse group of enzymes that catalyze the oxidation of various substrates. The mouse CYP2J subfamily includes members that have wide tissue distribution and are active in the metabolism of arachidonic acid (AA), linoleic acid (LA), and other lipids and xenobiotics. The mouse Cyp2j locus contains seven genes and three pseudogenes located in a contiguous 0.62 megabase cluster on chromosome 4. We describe four new mouse CYP2J isoforms (designated CYP2J8, CYP2J11, CYP2J12, and CYP2J13). The four cDNAs contain open reading frames that encode polypeptides with 62-84% identity with the three previously identified mouse CYP2Js. All four new CYP2J proteins were expressed in Sf21 insect cells. Each recombinant protein metabolized AA and LA to epoxides and hydroxy derivatives. Specific antibodies, mRNA probes, and polymerase chain reaction primer sets were developed for each mouse CYP2J to examine their tissue distribution. CYP2J8 transcripts were found in the kidney, liver, and brain, and protein expression was confirmed in the kidney and brain (neuropil). CYP2J11 transcripts were most abundant in the kidney and heart, with protein detected primarily in the kidney (proximal convoluted tubules), liver, and heart (cardiomyocytes). CYP2J12 transcripts were prominently present in the brain, and CYP2J13 transcripts were detected in multiple tissues, with the highest expression in the kidney. CYP2J12 and CYP2J13 protein expression could not be determined because the antibodies developed were not immunospecific. We conclude that the four new CYP2J isoforms might be involved in the metabolism of AA and LA to bioactive lipids in mouse hepatic and extrahepatic tissues.
Collapse
Affiliation(s)
- Joan P Graves
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cotton RB, Shah LP, Poole SD, Ehinger NJ, Brown N, Shelton EL, Slaughter JC, Baldwin HS, Paria BC, Reese J. Cimetidine-associated patent ductus arteriosus is mediated via a cytochrome P450 mechanism independent of H2 receptor antagonism. J Mol Cell Cardiol 2013; 59:86-94. [PMID: 23454087 DOI: 10.1016/j.yjmcc.2013.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/02/2013] [Accepted: 02/18/2013] [Indexed: 01/13/2023]
Abstract
Persistent patency of the ductus arteriosus (PDA) is a common problem in preterm infants. The antacid cimetidine is a potent antagonist of the H2 histamine receptor but it also inhibits certain cytochrome P450 enzymes (CYPs), which may affect DA patency. We examined whether cimetidine contributes to PDA and is mediated by CYP inhibition rather than H2 blockade. Analysis of a clinical trial to prevent lung injury in premature infants revealed a significant association between cimetidine treatment and PDA. Cimetidine and ranitidine, both CYP inhibitors as well as H2 blockers, caused relaxation of the term and preterm mouse DA. CYP enzymes that are inhibited by cimetidine were expressed in DA subendothelial smooth muscle. The selective CYP3A inhibitor ketoconazole induced greater DA relaxation than cimetidine, whereas famotidine and other H2 antagonists with less CYP inhibitory effects caused less dilation. Histamine receptors were developmentally regulated and localized in DA smooth muscle. However, cimetidine caused DA relaxation in histamine-deficient mice, consistent with CYP inhibition, not H2 antagonism, as the mechanism for PDA. Oxygen-induced DA constriction was inhibited by both cimetidine and famotidine. These studies show that antacids and other compounds with CYP inhibitory properties pose a significant and previously unrecognized risk for PDA in critically ill newborn infants.
Collapse
Affiliation(s)
- Robert B Cotton
- Department of Pediatrics, Vanderbilt University School of Medicine and the Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pidkovka N, Rao R, Mei S, Gong Y, Harris RC, Wang WH, Capdevila JH. Epoxyeicosatrienoic acids (EETs) regulate epithelial sodium channel activity by extracellular signal-regulated kinase 1/2 (ERK1/2)-mediated phosphorylation. J Biol Chem 2013; 288:5223-31. [PMID: 23283969 DOI: 10.1074/jbc.m112.407981] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The epithelial sodium channel (ENaC) participates in the regulation of plasma sodium and volume, and gain of function mutations in the human channel cause salt-sensitive hypertension. Roles for the arachidonic acid epoxygenase metabolites, the epoxyeicosatrienoic acids (EETs), in ENaC activity have been identified; however, their mechanisms of action remain unknown. In polarized M1 cells, 14,15-EET inhibited amiloride-sensitive apical to basolateral sodium transport as effectively as epidermal growth factor (EGF). The EET effects were associated with increased threonine phosphorylation of the ENaC β and γ subunits and abolished by inhibitors of (a) mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal regulated kinases 1 and 2 (MEK/ERK1/2) and (b) EGF receptor signaling. CYP2C44 epoxygenase knockdown blunted the sodium transport effects of EGF, and its 14,15-EET metabolite rescued the knockdown phenotype. The relevance of these findings is indicated by (a) the hypertension that results in mice administered cetuximab, an inhibitor of EGF receptor binding, and (b) immunological data showing an association between the pressure effects of cetuximab and reductions in ENaCγ phosphorylation. These studies (a) identify an ERK1/2-dependent mechanism for ENaC inhibition by 14,15-EET, (b) point to ENaC as a proximal target for EET-activated ERK1/2 mitogenic kinases, (c) characterize a mechanistic commonality between EGF and epoxygenase metabolites as ENaC inhibitors, and (d) suggest a CYP2C epoxygenase-mediated pathway for the regulation of distal sodium transport.
Collapse
Affiliation(s)
- Nataliya Pidkovka
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Nikolaeva S, Pradervand S, Centeno G, Zavadova V, Tokonami N, Maillard M, Bonny O, Firsov D. The circadian clock modulates renal sodium handling. J Am Soc Nephrol 2012; 23:1019-26. [PMID: 22440902 DOI: 10.1681/asn.2011080842] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The circadian clock contributes to the control of BP, but the underlying mechanisms remain unclear. We analyzed circadian rhythms in kidneys of wild-type mice and mice lacking the circadian transcriptional activator clock gene. Mice deficient in clock exhibited dramatic changes in the circadian rhythm of renal sodium excretion. In parallel, these mice lost the normal circadian rhythm of plasma aldosterone levels. Analysis of renal circadian transcriptomes demonstrated changes in multiple mechanisms involved in maintaining sodium balance. Pathway analysis revealed the strongest effect on the enzymatic system involved in the formation of 20-HETE, a powerful regulator of renal sodium excretion, renal vascular tone, and BP. This correlated with a significant decrease in the renal and urinary content of 20-HETE in clock-deficient mice. In summary, this study demonstrates that the circadian clock modulates renal function and identifies the 20-HETE synthesis pathway as one of its principal renal targets. It also suggests that the circadian clock affects BP, at least in part, by exerting dynamic control over renal sodium handling.
Collapse
Affiliation(s)
- Svetlana Nikolaeva
- Department of Pharmacology and Toxicology, University of Lausanne, 27 rue du Bugnon, Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Abstract
The assessment of salt sensitivity of blood pressure is difficult because of the lack of universal consensus on definition. Regardless of the variability in the definition of salt sensitivity, increased salt intake, independent of the actual level of blood pressure, is also a risk factor for cardiovascular morbidity and mortality and kidney disease. A modest reduction in salt intake results in an immediate decrease in blood pressure, with long-term beneficial consequences. However, some have suggested that dietary sodium restriction may not be beneficial to everyone. Thus, there is a need to distinguish salt-sensitive from salt-resistant individuals, but it has been difficult to do so with phenotypic studies. Therefore, there is a need to determine the genes that are involved in salt sensitivity. This review focuses on genes associated with salt sensitivity, with emphasis on the variants associated with salt sensitivity in humans that are not due to monogenic causes. Special emphasis is given to gene variants associated with salt sensitivity whose protein products interfere with cell function and increase blood pressure in transgenic mice.
Collapse
Affiliation(s)
- Hironobu Sanada
- Division of Health Science Research, Fukushima Welfare Federation of Agricultural Cooperatives, Fukushima, Japan.
| | | | | |
Collapse
|
24
|
Sodhi K, Inoue K, Gotlinger KH, Canestraro M, Vanella L, Kim DH, Manthati VL, Koduru SR, Falck JR, Schwartzman ML, Abraham NG. Epoxyeicosatrienoic acid agonist rescues the metabolic syndrome phenotype of HO-2-null mice. J Pharmacol Exp Ther 2009; 331:906-16. [PMID: 19717790 DOI: 10.1124/jpet.109.157545] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Heme oxygenase (HO) and cytochrome P450 (P450)-derived epoxyeicosatrienoic acids (EETs) participate in vascular protection, and recent studies suggest these two systems are functionally linked. We examined the consequences of HO deficiency on P450-derived EETs with regard to body weight, adiposity, insulin resistance, blood pressure, and vascular function in HO-2-null mice. The HO-2-null mice were obese, displayed insulin resistance, and had high blood pressure. HO-2 deficiency was associated with decreases in cyp2c expression, EET levels, HO-1 expression, and HO activity and with an increase in superoxide production and an impairment in the relaxing response to acetylcholine. In addition, HO-2-null mice exhibited increases in serum levels of tumor necrosis factor (TNF)-alpha and macrophage chemoattractant protein (MCP)-1 and a decrease in serum adiponectin levels. Treatment of HO-2-null mice with a dual-activity EET agonist/soluble epoxide hydrolase inhibitor increased renal and vascular EET levels and HO-1 expression, lowered blood pressure, prevented body weight gain, increased insulin sensitivity, reduced subcutaneous and visceral fat, and decreased serum TNF-alpha and MCP-1, while increasing adiponectin and restoring the relaxing responses to acetylcholine. The decrease in cyp2c expression and EETs levels in HO-2-null mice underscores the importance of the HO system in the regulation of epoxygenase levels and suggests that protection against obesity-induced cardiovascular complications requires interplay between these two systems. A deficiency in one of these protective systems may contribute to the adverse manifestations associated with the clinical progression of the metabolic syndrome.
Collapse
Affiliation(s)
- Komal Sodhi
- Department of Pharmacology New York Medical College, Valhalla, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yang S, Wei S, Pozzi A, Capdevila JH. The arachidonic acid epoxygenase is a component of the signaling mechanisms responsible for VEGF-stimulated angiogenesis. Arch Biochem Biophys 2009; 489:82-91. [PMID: 19464254 DOI: 10.1016/j.abb.2009.05.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 05/08/2009] [Accepted: 05/14/2009] [Indexed: 12/12/2022]
Abstract
Cultured lung endothelial cells (LEC) respond to VEGF or arachidonic acid with increases in cell proliferation, the formation of tube-like structures, and the activation of Akt and ERK1/2 mediated growth pathways. LECs express a VEGF inducible Cyp2c44 epoxygenase and its 11,12- and 14,15-EET metabolites increase cell proliferation, tubulogenic activity, and the phosphorylation states of the ERK1/2 and Akt kinases. Ketoconazole, an epoxygenase inhibitor, blocks the cellular responses to VEGF. LECs expressing a Cyp2c44 epoxygenase small interference RNA show reductions in Cyp2c44 mRNA levels, and in their VEGF-stimulated proliferative and tubulogenic capacities; effects that are associated with decreases in VEGF-induced phosphorylation of the ERK1/2 and Akt kinases. We conclude that the Cyp2c44 arachidonic acid epoxygenase is a component of the signaling pathways associated with VEGF-stimulated angiogenesis, and suggest a role for EETs in the growth factor-induced changes in the activation states of the ERK1/2 and Akt kinase pathways.
Collapse
Affiliation(s)
- Shiling Yang
- Department of Medicine, Vanderbilt University Medical School, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
26
|
Abstract
OBJECTIVES Imbalances in essential fatty acid levels have been reported in cystic fibrosis (CF), which may relate to elevated proinflammatory eicosanoid generation. The aim of this work was to better define eicosanoid metabolism in the CF intestine. MATERIALS AND METHODS We used the small intestine of the cystic fibrosis transmembrane conductance regulator knockout mouse (CF mouse) to measure eicosanoid metabolic gene expression by quantitative reverse transcription polymerase chain reaction and Western blot, and eicosanoid levels by enzyme immunoassay, as compared with wild-type (WT) littermates. RESULTS In the CF small intestine, expression of the secretory phospholipase A2 Pla2g5 mRNA was upregulated to 980% of WT levels. The following were downregulated: leukotriene C4 synthase Ltc4s (mRNA 55% of WT); omega-hydroxylase cytochrome P450s Cyp2c40 (mRNA 54% of WT), and Cyp4a10 (mRNA 4% of WT); and the major prostaglandin degradative enzymes prostaglandin dehydrogenase Hpgd (mRNA 27% of WT) and leukotriene B4 12-hydroxydehydrogenase/15-oxo-prostaglandin 13-reductase Ltb4dh (mRNA 64% and protein 30% of WT). The prostaglandins PGE2 and PGF2alpha were increased to 400% to 600% of WT levels in the CF mouse intestine, and the hydroxyeicosatetraenoic acids (HETEs) 12-, 15-, and 20-HETE were decreased to 3% to 20% of WT levels. CONCLUSIONS There are changes in eicosanoid metabolic gene expression that are accompanied by significant changes in specific eicosanoid levels. These changes are expected to play important roles in the pathophysiology of CF in the intestine.
Collapse
|