1
|
Goodman CD, Fakir H, Pautler S, Chin J, Bauman GS. Dosimetric Evaluation of PSMA PET-Delineated Dominant Intraprostatic Lesion Simultaneous Infield Boosts. Adv Radiat Oncol 2020; 5:212-220. [PMID: 32280821 PMCID: PMC7136625 DOI: 10.1016/j.adro.2019.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/30/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Prostate cancer is multifocal. However, there often exists a single dominant focus in the gland responsible for driving the biology of the disease. Dose escalation to the dominant lesion is a proposed strategy to increase tumor control. We applied radiobiological modeling to evaluate the dosimetric feasibility and benefit of dominant intraprostatic lesion simultaneous in-field boosts (DIL-SIB) to the gross tumor volume (GTV), defined using a novel molecular positron emission tomography (PET) probe (18F-DCFPyL) directed against prostate specific membrane antigen (PSMA). METHODS AND MATERIALS Patients with clinically localized, biopsy-proven prostate cancer underwent preoperative [18F]-DCFPyL PET/computed tomography (CT). DIL-SIB plans were generated by importing the PET/CT into the RayStation treatment planning system. GTV-PET for the DIL-SIB was defined by the highest %SUVmax (percentage of maximum standardized uptake value) that generated a biologically plausible volume. Volumetric arc-based plans incorporating prostate plus DIL-SIB treatment were generated. Tumor control probability (TCP) and normal tissue complication probability (NTCP) with fractionation schemes and boost doses specified in the FLAME (Investigate the Benefit of a Focal Lesion Ablative Microboost in Prostate Cancer; NCT01168479), PROFIT (Prostate Fractionated Irradiation Trial; NCT00304759), PACE (Prostate Advances in Comparative Evidence; NCT01584258), and hypoFLAME (Hypofractionated Focal Lesion Ablative Microboost in prostatE Cancer 2.0; NCT02853110) protocols were compared. RESULTS Comparative DIL-SIB plans for 6 men were generated from preoperative [18F]-DCFPyL PET/CT. Median boost GTV volume was 1.015 cm3 (0.42-1.83 cm3). Median minimum (D99%) DIL-SIB dose for F35BS, F20BS, F5BS, and F5BSH were 97.3 Gy, 80.8 Gy, 46.5 Gy, and 51.5Gy. TCP within the GTV ranged from 84% to 88% for the standard plan and 95% to 96% for the DIL-SIB plans. Within the rest of the prostate, TCP ranged from 89% to 91% for the standard plans and 90% to 92% for the DIL-SIB plans. NTCP for the rectum NTCP was similar for the DIL-SIB plans (0.3%-2.7%) compared with standard plans (0.7%-2.6%). Overall, DIL-SIB plans yielded higher uncomplicated TCP (NTCP, 90%-94%) versus standard plans (NTCP, 83%-85%). CONCLUSIONS PSMA PET provides a novel approach to define GTV for SIB-DIL dose escalation. Work is ongoing to validate PSMA PET-delineated GTV through correlation to coregistered postprostatectomy digitized histopathology.
Collapse
Affiliation(s)
- Christopher D. Goodman
- Department of Radiation Oncology, London Regional Cancer Program, London, Ontario, Canada
| | - Hatim Fakir
- Department of Radiation Oncology, London Regional Cancer Program, London, Ontario, Canada
| | - Stephen Pautler
- Division of Urology, Department of Surgery and Division of Surgical Oncology, Department of Oncology, Western University, London, Ontario, Canada
| | - Joseph Chin
- Division of Urology, Department of Surgery and Division of Surgical Oncology, Department of Oncology, Western University, London, Ontario, Canada
| | - Glenn S. Bauman
- Department of Radiation Oncology, London Regional Cancer Program, London, Ontario, Canada
| |
Collapse
|
2
|
Tantawy MN, Charles Manning H, Peterson TE, Colvin DC, Gore JC, Lu W, Chen Z, Chad Quarles C. Translocator Protein PET Imaging in a Preclinical Prostate Cancer Model. Mol Imaging Biol 2019; 20:200-204. [PMID: 28822038 DOI: 10.1007/s11307-017-1113-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE The identification and targeting of biomarkers specific to prostate cancer (PCa) could improve its detection. Given the high expression of translocator protein (TSPO) in PCa, we investigated the use of [18F]VUIIS1008 (a novel TSPO-targeting radioligand) coupled with positron emission tomography (PET) to identify PCa in mice and to characterize their TSPO uptake. PROCEDURES Ptenpc-/-, Trp53pc-/- prostate cancer-bearing mice (n = 9, 4-6 months old) were imaged in a 7T MRI scanner for lesion localization. Within 24 h, the mice were imaged using a microPET scanner for 60 min in dynamic mode following a retro-orbital injection of ~ 18 MBq [18F]VUIIS1008. Following imaging, tumors were harvested and stained with a TSPO antibody. Regions of interest (ROIs) were drawn around the tumor and muscle (hind limb) in the PET images. Time-activity curves (TACs) were recorded over the duration of the scan for each ROI. The mean activity concentrations between 40 and 60 min post radiotracer administration between tumor and muscle were compared. RESULTS Tumor presence was confirmed by visual inspection of the MR images. The uptake of [18F]VUIIS1008 in the tumors was significantly higher (p < 0.05) than that in the muscle, where the percent injected dose per unit volume for tumor was 7.1 ± 1.6 % ID/ml and that of muscle was < 1 % ID/ml. In addition, positive TSPO expression was observed in tumor tissue analysis. CONCLUSIONS The foregoing preliminary data suggest that TSPO may be a useful biomarker of PCa. Therefore, using TSPO-targeting PET ligands, such as [18F]VUIIS1008, may improve PCa detectability and characterization.
Collapse
Affiliation(s)
- Mohammed N Tantawy
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, 1161 21st Ave. S., AA 1105 MCN, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - H Charles Manning
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, 1161 21st Ave. S., AA 1105 MCN, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Todd E Peterson
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, 1161 21st Ave. S., AA 1105 MCN, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Daniel C Colvin
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, 1161 21st Ave. S., AA 1105 MCN, Nashville, TN, 37232, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, 1161 21st Ave. S., AA 1105 MCN, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Wenfu Lu
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Zhenbang Chen
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, 37208, USA
| | - C Chad Quarles
- Imaging Research, Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ, 85013, USA.
| |
Collapse
|
3
|
Chan J, Carver A, Brunt JNH, Vinjamuri S, Syndikus I. Effect of androgen deprivation therapy on intraprostatic tumour volume identified on 18F choline PET/CT for prostate dose painting radiotherapy. Br J Radiol 2016; 90:20160818. [PMID: 27993093 DOI: 10.1259/bjr.20160818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Prostate dose painting radiotherapy requires the accurate identification of dominant intraprostatic lesions (DILs) to be used as boost volumes; these can be identified on multiparametric MRI (mpMRI) or choline positron emission tomography (PET)/CT. Planning scans are usually performed after 2-3 months of androgen deprivation therapy (ADT). We examine the effect of ADT on choline tracer uptake and boost volumes identified on choline PET/CT. METHODS Fluoroethylcholine (18F choline) PET/CT was performed for dose painting radiotherapy planning in patients with intermediate- to high-risk prostate cancer. Initially, they were performed at planning. Owing to low visual tracer uptake, PET/CT for subsequent patients was performed at staging. We compared these two approaches on intraprostatic lesions obtained on PET using both visual and automatic threshold methods [prostate maximum standardized uptake value (SUVmax) 60%] when compared with mpMRI. RESULTS PET/CT was performed during ADT in 11 patients (median duration of 85 days) and before ADT in 29 patients. ADT significantly reduced overall prostate volume by 17%. During ADT, prostate SUVmax was lower although it did not reach statistical significance (4.2 vs 6.6, p = 0.06); three patients had no visually identifiable PET DIL; and visually defined PET DILs were significantly smaller than corresponding mpMRI DILs (p = 0.03). However, all patients scanned before ADT had at least one visually identifiable PET DIL, with no significant size difference between MRI and visually defined PET DILs. In both groups, threshold PET produced larger DILs than visual PET. Both PET methods have moderate sensitivity (0.50-0.68) and high specificity (0.85-0.98) for identifying MRI-defined disease. CONCLUSION For visual contouring of boost volumes in prostate dose painting radiotherapy, 18F choline PET/CT should be performed before ADT. For threshold contouring of boost volumes using our PET/CT scanning protocol, threshold levels of above 60% prostate SUVmax may be more suitable. Additional use of PET with MRI for radiotherapy planning can significantly change the overall boost volumes compared with using MRI alone. Advances in knowledge: For prostate dose painting radiotherapy, the additional use of 18F choline PET with MRI can significantly change the overall boost volumes, and PET should be performed before hormone therapy, especially if boost volumes are visually identified.
Collapse
Affiliation(s)
- Joachim Chan
- 1 Radiotherapy Department, Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, UK
| | - Antony Carver
- 1 Radiotherapy Department, Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, UK
| | - John N H Brunt
- 1 Radiotherapy Department, Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, UK
| | - Sobhan Vinjamuri
- 2 Nuclear Medicine Department, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - Isabel Syndikus
- 1 Radiotherapy Department, Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, UK
| |
Collapse
|
5
|
Acquisition with (11)C-choline and (18)F-fluorocholine PET/CT for patients with biochemical recurrence of prostate cancer: a systematic review and meta-analysis. Ann Nucl Med 2016; 30:385-92. [PMID: 27173771 DOI: 10.1007/s12149-016-1078-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/19/2016] [Indexed: 10/21/2022]
Abstract
The objective of the systematic review and meta-analysis was to evaluate whether the choice between two radiotracers, (11)C-choline ((11)C-cho) and (18)F-fluorocholine ((18)F-FCH) for PET/CT, and different acquisition protocols contributed to detect metastases for patients with biochemical recurrence of prostate cancer after radical prostatectomy or radiotherapy. We searched in January 2016 in Pubmed and Embase for articles that had used radiolabeled choline PET/CT in restaging. The meta-analysis evaluated technical and clinical aspects. Across 18 articles 1 219 of 2 213 patients (54.9 %) had a positive radiolabeled PET/CT image. Mean of the mean/median restaging PSA levels was 3.6 ± 2.7 ng/mL (range 0.5-10.7 ng/mL). Six articles with (11)C-cho PET/CT had a radiation activity of 561 ± 122 MBq and it was 293 ± 47 MBq in 12 articles with (18)F-FCH PET/CT. The difference was significant (P = 0.007, t test). Uptake time was 5 min in articles with (11)C-cho PET/CT and it was 29 ± 24 min in articles with (18)F-FCH PET/CT. The difference was significant (P = 0.02, t test). Thereby the detection rates of metastatic sites in articles with (11)C-cho (30 ± 5 %) and (18)F-FCH (39 ± 5 %) did not differ significantly (P = 0.26, t test). In linear regression analyses of the articles, the radiation activity of (11)C-cho and (18)F-FCH was not significantly associated with the detection rate of metastatic sites (P = 0.75 and P = 0.60). Restaging with radiolabeled choline PET/CT detected metastatic sites for patients with biochemical recurrence and PSA levels of 1-10 ng/mL at clinically relevant level. The choice between the two choline radiotracers and different acquisition protocols had no significant impact on detection.
Collapse
|