1
|
Williams TL, Gonen M, Wray R, Do RKG, Simpson AL. Quantitation of Oncologic Image Features for Radiomic Analyses in PET. Methods Mol Biol 2024; 2729:409-421. [PMID: 38006509 DOI: 10.1007/978-1-0716-3499-8_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Radiomics is an emerging and exciting field of study involving the extraction of many quantitative features from radiographic images. Positron emission tomography (PET) images are used in cancer diagnosis and staging. Utilizing radiomics on PET images can better quantify the spatial relationships between image voxels and generate more consistent and accurate results for diagnosis, prognosis, treatment, etc. This chapter gives the general steps a researcher would take to extract PET radiomic features from medical images and properly develop models to implement.
Collapse
Affiliation(s)
- Travis L Williams
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mithat Gonen
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rick Wray
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard K G Do
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amber L Simpson
- School of Computing and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
2
|
The Application of [68Ga]-Labeled FAPI-04 PET/CT for Targeting and Early Detection of Pancreatic Carcinoma in Patient-Derived Orthotopic Xenograft Models. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6596702. [PMID: 36051919 PMCID: PMC9410842 DOI: 10.1155/2022/6596702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/02/2022] [Indexed: 12/30/2022]
Abstract
[18F]FDG as a probe of PET/CT is a radiolabeled glucose analogue taken up by most cells, but its batch activity is limited. [68Ga]FAPI-04 is a promising alternative based on a fibroblast activation protein-specific inhibitor (FAPI) labeled with radiotracer FAP. Here, a series of databases suggested that FAP expression was significantly different in pancreatic cancer compared to normal tissue. The FAP-positive fibroblasts were evaluated around the tumor cells and the stroma. A patient-derived orthotopic xenograft (PDOX) model of pancreatic adenocarcinoma (PDAC) exhibits significantly higher quantitative uptake of [68Ga]FAPI-04 (P < 0.05) than [18F]FDG PET/CT in various organs. Because of relatively high (T/M) ratios, the [68Ga]FAPI-04 is excellent for B-mode ultrasound, NIRF, and PET/CT. Thus, [68Ga]FAPI-04 PET displayed a better tumor specificity and can be a potential application for the early detection of pancreatic cancer.
Collapse
|
3
|
Arslan E, Çermik TF. PET/CT Variants and Pitfalls in Liver, Biliary Tract, Gallbladder and Pancreas. Semin Nucl Med 2021; 51:502-518. [PMID: 34049687 DOI: 10.1053/j.semnuclmed.2021.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A wide variety of pathological anomalies may occur in the liver, biliary system, and pancreas. It is a necessity to use many different imaging techniques in order to distinguish such varied pathologies, especially those from malignant processes. Positron Emission Tomography/Computed Tomography (PET/CT) is an imaging method that has proven its diagnostic value in oncology and can be used for different clinical purposes. Fluoro-18 fluoro-2-deoxy-D-glucose has a wide range of uses as a dominant radiopharmaceutical in routine molecular imaging, however, molecular imaging has started to play a more important role in personalized cancer treatment in recent years with new Fluoro-18 and Gallium-68 labeled tracers. Although molecular imaging has a strong diagnostic effect, the surprises and pitfalls of molecular imaging can lead us to unexpected and misleading results. Prior to PET/CT analysis and reporting, information about possible technical and physiological pitfalls, normal histological features of tissues, inflammatory pathologies, specific clinical features of the case, treatment-related complications and past treatments should be evaluated in advance to avoid misinterpretation. In this review, the physiological and pathophysiological variants as well as pitfalls encountered in PET/CT imaging of the liver, biliary tract, gallbladder, and pancreas will be examined. Other benign and malignant pathologies that have been reported to date and that have led to incorrect evaluation will be listed. It is expected that the devices, software, and artificial intelligence applications that will be developed in the near future will enable much more effective and faster imaging that will reduce the potential causes of error. However, as a result of the dynamic and evolving structure of the information obtained by molecular imaging, the inclusion of the newly developed radiopharmaceuticals in routine practice will continue to carry new potentials as well as new troubles. Although molecular imaging will be the flagship of diagnostic oncology in the 21st century, the correct analysis and interpretation by the physician will continue to form the basis of achieving optimal performance.
Collapse
Affiliation(s)
- Esra Arslan
- Istanbul Training and Research Hospital, Clinic of Nuclear Medicine, University of Health and Sciences Turkey, Istanbul, Turkey.
| | - Tevfik Fikret Çermik
- Istanbul Training and Research Hospital, Clinic of Nuclear Medicine, University of Health and Sciences Turkey, Istanbul, Turkey
| |
Collapse
|
4
|
Arnone A, Laudicella R, Caobelli F, Guglielmo P, Spallino M, Abenavoli E, Martini AL, Filice R, Comis AD, Cuzzocrea M, Linguanti F, Evangelista L, Alongi P. Clinical Impact of 18F-FDG PET/CT in the Diagnostic Workup of Pancreatic Ductal Adenocarcinoma: A Systematic Review. Diagnostics (Basel) 2020; 10:diagnostics10121042. [PMID: 33287195 PMCID: PMC7761738 DOI: 10.3390/diagnostics10121042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
In this review, the performance of fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) in the diagnostic workup of pancreatic ductal adenocarcinoma (PDAC) is evaluated. A comprehensive literature search up to September 2020 was performed, selecting studies with the presence of: sample size ≥10 patients and index test (i.e., “FDG” or “18F-FDG” AND “pancreatic adenocarcinoma” or “pancreas cancer” AND “PET” or “positron emission tomography”). The methodological quality was evaluated using the revised quality assessment of diagnostic accuracy studies (QUADAS-2) tool and presented according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Basic data (authors, year of publication, country and study design), patients’ characteristics (number of enrolled subjects and age), disease phase, type of treatment and grading were retrieved. Forty-six articles met the adopted research criteria. The articles were divided according to the considered clinical context. Namely, besides conventional anatomical imaging, such as computed tomography (CT) and magnetic resonance imaging (MRI), molecular imaging with FDG PET/CT is an important tool in PDAC, for all disease stages. Further prospective studies will be necessary to confirm the cost-effectiveness of such imaging techniques by testing its real potential improvement in the clinical management of PDAC.
Collapse
Affiliation(s)
- Annachiara Arnone
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (E.A.); (A.L.M.); (F.L.)
- Correspondence:
| | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, 98125 Messina, Italy; (R.L.); (R.F.); (A.D.C.)
| | - Federico Caobelli
- Clinic of Radiology & Nuclear Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland;
| | - Priscilla Guglielmo
- Nuclear Medicine Division, University Hospital of Parma, 43126 Parma, Italy;
| | - Marianna Spallino
- Nuclear Medicine Unit, ASST “Papa Giovanni XXIII”, 24127 Bergamo, Italy;
| | - Elisabetta Abenavoli
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (E.A.); (A.L.M.); (F.L.)
| | - Anna Lisa Martini
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (E.A.); (A.L.M.); (F.L.)
| | - Rossella Filice
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, 98125 Messina, Italy; (R.L.); (R.F.); (A.D.C.)
| | - Alessio Danilo Comis
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, 98125 Messina, Italy; (R.L.); (R.F.); (A.D.C.)
| | - Marco Cuzzocrea
- Nuclear Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Flavia Linguanti
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (E.A.); (A.L.M.); (F.L.)
| | - Laura Evangelista
- Nuclear Medicine Unit, Department of Medicine, Padova University Hospital, Via Giustiniani 2, 35128 Padova, Italy;
| | - Pierpaolo Alongi
- Unit of Nuclear Medicine, Fondazione Istituto G.Giglio, 90015 Cefalù, Italy;
| |
Collapse
|
5
|
Chen Y, Wang L, Luo S, Hu J, Huang X, Li PW, Zhang Y, Wu C, Tian BL. Enhancement of Antitumor Efficacy of Paclitaxel-Loaded PEGylated Liposomes by N,N-Dimethyl Tertiary Amino Moiety in Pancreatic Cancer. Drug Des Devel Ther 2020; 14:2945-2957. [PMID: 32801636 PMCID: PMC7398872 DOI: 10.2147/dddt.s261017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/26/2020] [Indexed: 02/05/2023] Open
Abstract
Introduction Pancreatic cancer, or pancreatic duct adenocarcinoma (PDAC), remains one of the most lethal cancers and features insidious onset, highly aggressive behavior and early distant metastasis. The dense fibrotic stroma surrounding tumor cells is thought to be a shield to resist the permeation of chemotherapy drugs in the treatment of PDAC. Thus, we synthesized a pancreas-targeting paclitaxel-loaded PEGylated liposome and investigated its antitumor efficacy in the patient-derived orthotopic xenograft (PDOX) nude mouse models of PDAC. Methods The PTX-loaded PEGylated liposomes were prepared by film dispersion-ultrasonic method and modified by an N,N-dimethyl tertiary amino residue. Morphology characteristics of the PTX-loaded liposomes were observed by transmission electron microscope (TEM). The PDOX models of PDAC were established by orthotopic implantation and imaged by a micro positron emission tomography/computed tomography (PET/CT) imaging system. The in vivo distribution and antitumor study were then carried out to observe the pancreas-targeting accumulation and the antitumor efficacy of the proposed PTX liposomes. Results PTX loaded well into both modified (PTX-Lip2N) and unmodified (PTX-Lip) PEGylated liposomes with spherical shapes and suitable parameters for the endocytosis process. The PDOX nude mouse models were successfully created in which high 18F-FDG intaking regions were observed by micro-PET/CT. In addition to higher cellular uptakes of PTX-Lip2N by the BxPC-3 cells, the proposed nanoparticle had a notable penetrating ability towards PDAC tumor tissues, and consequently, the antitumor ability of PTX-Lip2N was significantly superior to the unmodified PTX-Lip in vivo PDOX models and even more effective than nab-PTX in restraining tumor growth. Conclusion The modified pancreas-targeting PTX-loaded PEGylated liposomes provide a promising platform for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yang Chen
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Li Wang
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Shi Luo
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jun Hu
- Laboratory of Basic Scientific Research, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Xing Huang
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Pei-Wen Li
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yi Zhang
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Chao Wu
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Bo-Le Tian
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| |
Collapse
|
6
|
Alongi P, Argenziano G, Mansi L. Imaging in Melanoma Management: What's New Under the Sun? Curr Radiopharm 2020; 13:3-5. [PMID: 32183658 DOI: 10.2174/187447101301200218111438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Pierpaolo Alongi
- Nuclear Medicine Unit, Fondazione Istituto G.Giglio, Cefalu, Italy
| | | | - Luigi Mansi
- Section Health and Development, Interuniversity Research Center for Sustainability (CIRPS), Naples, Italy
| |
Collapse
|
7
|
Albano D, Familiari D, Fornito MC, Scalisi S, Laudicella R, Galia M, Grassedonio E, Ruggeri A, Ganduscio G, Messina M, Spada M, Midiri M, Alongi P. Clinical and Prognostic Value of 18F-FDG-PET/CT in the Restaging Process of Recurrent Cutaneous Melanoma. Curr Radiopharm 2020; 13:42-47. [PMID: 31595860 DOI: 10.2174/1874471012666191009161826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/15/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Several studies on 18F-FDG-PET/CT have investigated the prognostic role of this imaging modality in different tumors after treatment. Nevertheless, its role in restaging patients with recurrent CM still needs to be defined. OBJECTIVE The aim of this retrospective multicenter study was to evaluate the clinical and prognostic impact of 18F-FDG-PET/CT on the restaging process of cutaneous melanoma (CM) after surgery in patients with suspected distant recurrent disease or suspected metastatic progression disease. MATERIALS AND METHODS 74 patients surgically treated for CM underwent 18F-FDG-PET/CT for suspected distant recurrent disease or suspected metastatic progression disease. The diagnostic accuracy of visually interpreted 18F-FDG-PET/CT was obtained by considering histology (n=21 patients), other diagnostic imaging modalities performed within 2 months of PET/CT (CT in 52/74 patients and Whole-Body MRI in 18/74 patients) and clinical follow-up (n=74 patients) for at least 24 months containing all the clinical and diagnostic information useful for the PET performance assessment and outcome. Progression-free survival (PFS) and overall survival (OS) were assessed by using the Kaplan- Meier method. The risk of progression (Hazard Ratio-HR) was computed by the Cox regression analysis. RESULTS Suspicion of recurrent CM was confirmed in 24/27 patients with a positive 18F-FDG-PET/CT scan. Overall, the sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 18F-FDG-PET/CT were 82%, 93%, 88%, 89%, and 89%, respectively, with area under the curve being 0.87 (95%IC 0.78-0.97; p<0.05). 18F-FDG-PET/CT findings significantly influenced the therapeutic management in 18 patients (modifying therapy in 10 patients; guiding surgery in 8 patients). After 2 years of follow-up, PFS was significantly longer in patients with a negative vs. a positive 18F-FDG-PET/CT scan (90% vs 46%, p<0.05; Fig. 1). Moreover, a negative scan was associated with a significantly longer OS than a positive one (76% vs 39% after 2 years, p<0.05; Fig. 2). In addition, a positive 18F-FDG-PET/CT scan was associated with an increased risk of disease progression (HR=8.2; p<0,05). CONCLUSION 18F-FDG-PET/CT showed a valuable diagnostic performance in patients with suspicion of recurrent CM. This imaging modality might have an important prognostic value in predicting the survival outcomes, assessing the risk of disease progression, and guiding treatment decision making.
Collapse
Affiliation(s)
- Domenico Albano
- Unit of Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161 Milano, Italy
| | - Demetrio Familiari
- Nuclear Medicine Department A.R.N.A.S GARIBALDI - Nesima, Via Palermo 636, Catania, Italy
- Nuclear Medicine Unit, San Salvatore Hospital, Via Vetoio 1, L'aquila, Italy
| | - Maria C Fornito
- Nuclear Medicine Department A.R.N.A.S GARIBALDI - Nesima, Via Palermo 636, Catania, Italy
| | - Salvatore Scalisi
- Nuclear Medicine Unit, Fondazione Istituto G.Giglio, Ct.da Pietra Pollastra-pisciotto, Cefalu, Italy
| | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, Messina ME, Italy
| | - Massimo Galia
- Section of Radiological Sciences, Di.Bi.Med., University of Palermo, Palermo, Italy
| | - Emanuele Grassedonio
- Section of Radiological Sciences, Di.Bi.Med., University of Palermo, Palermo, Italy
| | - Antonella Ruggeri
- Nuclear Medicine Department A.R.N.A.S GARIBALDI - Nesima, Via Palermo 636, Catania, Italy
| | | | - Marco Messina
- Unit of Oncology, Fondazione Istituto G.Giglio, Ct.da Pietra Pollastra-pisciotto, Cefalu, Italy
| | - Massimiliano Spada
- Unit of Oncology, Fondazione Istituto G.Giglio, Ct.da Pietra Pollastra-pisciotto, Cefalu, Italy
| | - Massimo Midiri
- Section of Radiological Sciences, Di.Bi.Med., University of Palermo, Palermo, Italy
| | - Pierpaolo Alongi
- Nuclear Medicine Unit, Fondazione Istituto G.Giglio, Ct.da Pietra Pollastra-pisciotto, Cefalu, Italy
| |
Collapse
|
8
|
The Utility of PET/Computed Tomography for Radiation Oncology Planning, Surveillance, and Prognosis Prediction of Gastrointestinal Tumors. PET Clin 2019; 15:77-87. [PMID: 31735304 DOI: 10.1016/j.cpet.2019.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
At present, the strongest evidence for the use of PET/computed tomography (CT) in gastrointestinal (GI) malignancies is to rule out distant metastatic disease at diagnosis, radiation treatment planning for anal malignancies, and disease recurrence monitoring in colorectal and anal malignancies. Use of PET/CT for GI malignancies continues to evolve over time, with new studies evaluating prognostic abilities of PET/CT and with increasing sensitivity and spatial resolution of more modern PET/CT scanners. The authors encourage future applications and prospective evaluation of the use of PET/CT in the staging, prognostication, and recurrence prediction for GI malignancies.
Collapse
|
9
|
Incerti E, Vanoli EG, Broggi S, Gumina C, Passoni P, Slim N, Fiorino C, Reni M, Mapelli P, Cattaneo M, Zanon S, Calandrino R, Gianolli L, Di Muzio N, Picchio M. Early variation of 18-fluorine-labelled fluorodeoxyglucose PET-derived parameters after chemoradiotherapy as predictors of survival in locally advanced pancreatic carcinoma patients. Nucl Med Commun 2019; 40:1072-1080. [PMID: 31365502 DOI: 10.1097/mnm.0000000000001065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To investigate if early variation of PET-derived parameters after concomitant chemoradiotherapy (CRT) predicts overall survival (OS), local relapse free survival (LRFS), distant relapse free survival (DRFS) and progression free survival (PFS) in locally advanced pancreatic cancer (LAPC) patients. METHODS Fifty-two LAPC patients (median age: 61 years; range: 35-85) with available FDG PET/CT before and after RT (2-6 months, median: 2) were enrolled from May 2005 to June 2015. The predictive value of the percentage variation of mean/maximum standard uptake value (ΔSUVmean/max), metabolic tumour volume (ΔMTV) and total lesion glycolysis (ΔTLG), estimated considering different uptake thresholds (40-50-60%), was investigated between pre- and post-RT PET. The percentage difference between gastrointestinal cancer-associated antigen (ΔGICA) levels measured at the time of PET was also considered. Log-rank test and Cox regression analysis were performed to assess the prognostic value of considered PET-derived parameters on survival outcomes. RESULTS The median follow-up was 13 months (range: 4-130). At univariate analysis, ΔTLG50 showed borderline significance in predicting OS (P = 0.05) and was the most significant parameter correlated to LRFS and PFS (P = 0.001). Median LRFS was 4 and 33 months if ΔTLG50 was below or above 35% respectively (P = 0.0003); similarly, median PFS was 3 vs 6 months (P = 0.0009). No significant correlation was found between PET-derived parameters and DRFS, while the ΔGICA was the only borderline significant prognostic value for this endpoint (P = 0.05). CONCLUSION PET-derived parameters predict survival in LAPC patients; in particular, ΔTLG50 is the strongest predictor. The combination of these biochemical and imaging biomarkers is promising in identifying patients at higher risk of earlier relapse.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Michele Reni
- Department of Oncology, IRCCS San Raffaele Scientific Institute
| | - Paola Mapelli
- Unit of Nuclear Medicine
- Vita-Salute San Raffaele University, Milan, Italy
| | | | - Silvia Zanon
- Department of Oncology, IRCCS San Raffaele Scientific Institute
| | | | | | | | - Maria Picchio
- Unit of Nuclear Medicine
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
10
|
Bogowicz M, Vuong D, Huellner MW, Pavic M, Andratschke N, Gabrys HS, Guckenberger M, Tanadini-Lang S. CT radiomics and PET radiomics: ready for clinical implementation? THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2019; 63:355-370. [PMID: 31527578 DOI: 10.23736/s1824-4785.19.03192-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Today, rapid technical and clinical developments result in an increasing number of treatment options for oncological diseases. Thus, decision support systems are needed to offer the right treatment to the right patient. Imaging biomarkers hold great promise in patient-individual treatment guidance. Routinely performed for diagnosis and staging, imaging datasets are expected to hold more information than used in the clinical practice. Radiomics describes the extraction of a large number of meaningful quantitative features from medical images, such as computed tomography (CT) and positron emission tomography (PET). Due to the non-invasive nature and ability to capture 3D image-based heterogeneity, radiomic features are potential surrogate markers of the cancer phenotype. Several radiomic studies are published per day, owing to encouraging results of many radiomics-based patient outcome models. Despite this comparably large number of studies, radiomics is mainly studied in proof of principle concept. Hence, a translation of radiomics from a hot topic research field into an essential clinical decision-making tool is lacking, but of high clinical interest. EVIDENCE ACQUISITION Herein, we present a literature review addressing the clinical evidence of CT and PET radiomics. An extensive literature review was conducted in PubMed, including papers on robustness and clinical applications. EVIDENCE SYNTHESIS We summarize image-modality related influences on the robustness of radiomic features and provide an overview of clinical evidence reported in the literature. Today, more evidence has been provided for CT imaging, however, PET imaging offers the promise of direct imaging of biological processes and functions. We provide a summary of future research directions, which needs to be addressed in order to successfully introduce radiomics into clinical medicine. In comparison to CT, more focus should be directed towards harmonization of PET acquisition and reconstruction protocols, which is important for transferable modelling. CONCLUSIONS Both CT and PET radiomics are promising pre-treatment and intra-treatment biomarkers for outcome prediction. Most studies are performed in retrospective setting, however their validation in prospective data collections is ongoing.
Collapse
Affiliation(s)
- Marta Bogowicz
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland -
| | - Diem Vuong
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Martin W Huellner
- Department of Nuclear Medicine, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Matea Pavic
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Hubert S Gabrys
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Fiorentino A, Laudicella R, Ciurlia E, Annunziata S, Lancellotta V, Mapelli P, Tuscano C, Caobelli F, Evangelista L, Marino L, Quartuccio N, Fiore M, Borghetti P, Chiaravalloti A, Ricci M, Desideri I, Alongi P. Positron emission tomography with computed tomography imaging (PET/CT) for the radiotherapy planning definition of the biological target volume: PART 2. Crit Rev Oncol Hematol 2019; 139:117-124. [PMID: 30940428 DOI: 10.1016/j.critrevonc.2019.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 02/07/2023] Open
Abstract
AIM Positron Emission Tomography with Computed Tomography (PET/CT) has been proven to be useful in the definition of Radiotherapy (RT) target volume. In this regard, the present expert review summarizes existing data for pancreas, prostate, gynecological and rectum/anal cancer. METHODS A comprehensive search of published original article was made, based on SCOPUS and PubMed database, selecting the paper that evaluated the role of PET/CT in the definition of RT volume. RESULTS FDG-PET has an important and promising role for pancreatic cancer. Choline PET/CT could be useful for identifying high-risk volumes for prostate cancer; while PSMA PET/CT is still under evaluation. FDG PET/CT in gynecological cancers has been shown to impact external-beam RT planning. The role of FDG-PET for Gross Tumor volume identification is crucial, representing a useful and powerful tool for anal and rectal cancer. CONCLUSION Taken together, molecular and functional imaging approaches offer a major step to individualize radiotherapeutic approach.
Collapse
Affiliation(s)
- Alba Fiorentino
- Radiotherapy Oncology Department, General Regional Hospital "F. Miulli", Acquaviva delle Fonti-Bari, Italy.
| | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morphofunctional Imaging, University of Messina, Italy
| | - Elisa Ciurlia
- Radiotherapy Oncology Department, Vito Fazzi Hospital, Lecce, Italy
| | - Salvatore Annunziata
- Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica Sacro Cuore, Roma, Italy
| | - Valentina Lancellotta
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC di Radioterapia, Dipartimento di Scienze Radiologiche, Radioterapiche ed Ematologiche, Roma, Italy
| | - Paola Mapelli
- Department of Nuclear Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carmelo Tuscano
- Radiotherapy Oncology Department, Azienda Ospedaliera Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Federico Caobelli
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Laura Evangelista
- Nuclear Medicine Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Lorenza Marino
- Radiotherapy Oncology Department, REM, Viagrande, Catania, Italy
| | | | - Michele Fiore
- Radiation Oncology, Campus Bio-Medico University, Rome, Italy
| | - Paolo Borghetti
- Radiation Oncology Department University and Spedali Civili, Brescia, Italy
| | - Agostino Chiaravalloti
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Maria Ricci
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Isacco Desideri
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", Section of Radiation Oncology, University of Florence, Italy
| | - Pierpaolo Alongi
- Department of Radiological Sciences, Nuclear Medicine Service, Fondazione Istituto G. Giglio, Cefalu, Italy
| | | |
Collapse
|